論文の概要: Wasserstein Generative Adversarial Networks for Online Test Generation
for Cyber Physical Systems
- arxiv url: http://arxiv.org/abs/2205.11060v1
- Date: Mon, 23 May 2022 05:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 19:44:18.138737
- Title: Wasserstein Generative Adversarial Networks for Online Test Generation
for Cyber Physical Systems
- Title(参考訳): サイバー物理システムのためのオンラインテスト生成のためのwasserstein生成広告ネットワーク
- Authors: Jarkko Peltom\"aki, Frankie Spencer, Ivan Porres
- Abstract要約: 本稿では,Wasserstein Generative Adversarial Networksに基づく新しいオンラインテスト生成アルゴリズムWOGANを提案する。
WOGANは、フェールテストを決定するフィットネス機能を持つテスト対象のシステムに適用可能な汎用ブラックボックステストジェネレータである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel online test generation algorithm WOGAN based on
Wasserstein Generative Adversarial Networks. WOGAN is a general-purpose
black-box test generator applicable to any system under test having a fitness
function for determining failing tests. As a proof of concept, we evaluate
WOGAN by generating roads such that a lane assistance system of a car fails to
stay on the designated lane. We find that our algorithm has a competitive
performance respect to previously published algorithms.
- Abstract(参考訳): 本稿では,Wasserstein Generative Adversarial Networksに基づく新しいオンラインテスト生成アルゴリズムWOGANを提案する。
WOGANは、フェールテストを決定するフィットネス機能を持つテスト対象のシステムに適用可能な汎用ブラックボックステストジェネレータである。
概念実証として、車両の車線支援システムが指定された車線に留まらないような道路を生成することにより、WOGANを評価する。
我々のアルゴリズムは以前に発表されたアルゴリズムと競合する性能を持つ。
関連論文リスト
- Learning test generators for cyber-physical systems [2.4171019220503402]
サイバー物理システムに対するブラックボックス実行時検証手法は、入力と出力が時間とともに信号として表現されるシステムにおけるエラーを発見するために用いられる。
既存の方法、例えば要求のファルシフィケーションは、システム正当性に対する反例である単一の入力を見つけることに集中することが多い。
テストジェネレータの作成方法を示し、単一の要件に対して、複数の多種多様な反例を生成する。
論文 参考訳(メタデータ) (2024-10-04T07:34:02Z) - Benchmarking ChatGPT on Algorithmic Reasoning [58.50071292008407]
GNN向けに設計されたCLRSベンチマークスイートからChatGPTのアルゴリズム問題を解く能力を評価する。
ChatGPTは、Pythonを使ってこれらの問題を解決することで、専門家のGNNモデルより優れています。
論文 参考訳(メタデータ) (2024-04-04T13:39:06Z) - Requirement falsification for cyber-physical systems using generative
models [1.90365714903665]
OGANは、システムが運用される前に設計、ソフトウェア、ハードウェアの欠陥を明らかにするシステムの安全性の反例となるインプットを見つけることができる。
OGANはアトミックにテストを実行し、テスト中のシステムの以前のモデルを必要としない。
OGANは、ほとんど努力せずに新しいシステムに適用でき、テスト中のシステムの要件がほとんどなく、最先端のCPSファルシフィケーション効率と有効性を示す。
論文 参考訳(メタデータ) (2023-10-31T14:32:54Z) - Reinforcement learning informed evolutionary search for autonomous
systems testing [15.210312666486029]
本稿では,ドメイン知識から得られるサロゲート報酬を用いて学習した強化学習(RL)エージェントを用いて進化的探索(ES)を強化することを提案する。
RIGAAとして知られる我々の手法では、まずRLエージェントを訓練し、問題の有用な制約を学習し、それを用いて探索アルゴリズムの初期集団の特定の部分を生成する。
RIGAAは自律性アリロボットの迷路生成と自律車線維持支援システムの道路トポロジー生成の2つのケーススタディで評価した。
論文 参考訳(メタデータ) (2023-08-24T13:11:07Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Machine Learning Testing in an ADAS Case Study Using
Simulation-Integrated Bio-Inspired Search-Based Testing [7.5828169434922]
Deeperは、ディープニューラルネットワークベースの車線保持システムをテストするための障害検出テストシナリオを生成する。
新たに提案されたバージョンでは、新しいバイオインスパイアされた検索アルゴリズム、遺伝的アルゴリズム(GA)、$(mu+lambda)$および$(mu,lambda)$進化戦略(ES)、およびParticle Swarm Optimization(PSO)を利用する。
評価の結果,Deeperで新たに提案したテストジェネレータは,以前のバージョンよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-22T20:27:40Z) - Waypoint Planning Networks [66.72790309889432]
本稿では,ローカルカーネル(A*のような古典的アルゴリズム)と学習アルゴリズムを用いたグローバルカーネルを用いたLSTMに基づくハイブリッドアルゴリズムを提案する。
我々は、WPNとA*を比較し、動き計画ネットワーク(MPNet)やバリューネットワーク(VIN)を含む関連する作業と比較する。
WPN の探索空間は A* よりもかなり小さいが、ほぼ最適な結果が得られることが示されている。
論文 参考訳(メタデータ) (2021-05-01T18:02:01Z) - Online GANs for Automatic Performance Testing [0.10312968200748115]
GAN(Generative Adversarial Network)のオンライン版を利用した自動パフォーマンステストのための新しいアルゴリズムを提案する。
提案手法では、テスト中のシステムの事前のトレーニングセットやモデルを必要としない。
我々は,提案アルゴリズムが概念実証として機能し,GANの試験生成への応用に関する研究議論の火花となることを期待する。
論文 参考訳(メタデータ) (2021-04-21T06:03:27Z) - Generating Correct Answers for Progressive Matrices Intelligence Tests [88.78821060331582]
Ravenのプログレッシブマトリクス(Progressive Matrices)は、複数選択のインテリジェンステストである。
このテストに対処する以前の試みは、複数の選択肢の中から正しい回答を選択することに集中していました。
この作業では、代わりに、定義によって難しいタスクである選択を見ることなく、グリッドに与えられた正しい回答を生成することに焦点を合わせます。
論文 参考訳(メタデータ) (2020-11-01T13:21:07Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Unsupervised Text Generation by Learning from Search [86.51619839836331]
TGLSは、教師なしテキスト生成のための新しいフレームワークである。
実世界の自然言語生成タスクであるパラフレーズ生成とテキストの形式化におけるTGLSの有効性を示す。
論文 参考訳(メタデータ) (2020-07-09T04:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。