Quantum state tomography of qudits via Hong-Ou-Mandel interference
- URL: http://arxiv.org/abs/2205.11160v1
- Date: Mon, 23 May 2022 09:51:27 GMT
- Title: Quantum state tomography of qudits via Hong-Ou-Mandel interference
- Authors: Yoshiaki Tsujimoto, Rikizo Ikuta, Kentaro Wakui, Toshiki Kobayashi and
Mikio Fujiwara
- Abstract summary: We propose a method to perform the quantum state tomography (QST) of an $mathitn$-partite qudit state embedded in single photons.
- Score: 0.13124513975412253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method to perform the quantum state tomography (QST) of an
$\mathit{n}$-partite qudit state embedded in single photons using the
Hong-Ou-Mandel (HOM) interference between the target state and probe state.
This method requires only passive beam splitters for the HOM interference and
removes all active optical devices in the target modes to control the
measurement bases needed in conventional QST. Hence, it is applicable to
various degree of freedom of the target state without altering the measurement
setup. Moreover, a faithful estimation is realized even with classical probe
light such as laser and thermal light. As a proof-of-principle, we performed
the experimental demonstration using a polarization qubit. Regardless of the
photon statistics of the probe light, the estimated results of state
reconstruction are as accurate as those verified by conventional QST.
Related papers
- Phase-resolved measurement of entangled states via common-path interferometry [0.0]
We propose and experimentally demonstrate a method to directly measure the phase of biphoton states using an entangled mode as a collinear reference.
As one particularly useful application, we use the new methodology to directly measure the geometric phase accumulation of entangled photons.
arXiv Detail & Related papers (2024-06-17T17:02:14Z) - Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Neural Network Enhanced Single-Photon Fock State Tomography [6.434126816101052]
We report the experimental implementation of single-photon quantum state tomography by directly estimating target parameters.
Our neural network enhanced quantum state tomography characterizes the photon number distribution for all possible photon number states from the balanced homodyne detectors.
Such a fast, robust, and precise quantum state tomography provides us a crucial diagnostic toolbox for the applications with single-photon Fock states and other non-Gaussisan quantum states.
arXiv Detail & Related papers (2024-05-05T04:58:18Z) - A Quantum Theory of Temporally Mismatched Homodyne Measurements with Applications to Optical Frequency Comb Metrology [39.58317527488534]
We derive measurement operators for homodyne detection with arbitrary mode overlap.
These operators establish a foundation to extend frequency-comb interferometry to a wide range of scenarios.
arXiv Detail & Related papers (2023-10-05T22:49:50Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Enhanced detection techniques of Orbital Angular Momentum states in the
classical and quantum regimes [48.7576911714538]
Complex structure inherent in Orbital Angular Momentum (OAM) states makes their detection and classification nontrivial.
Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre-Gauss modes.
We employ Hypergeometric-Gaussian modes as the basis states of a refined model that can be used -- in certain scenarios -- to better tailor OAM detection techniques.
arXiv Detail & Related papers (2022-01-19T18:46:34Z) - QND measurements of photon number in monolithic microcavities [0.0]
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta.
We show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field.
We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit.
arXiv Detail & Related papers (2021-11-29T17:00:15Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - High-Fidelity Measurement of a Superconducting Qubit using an On-Chip
Microwave Photon Counter [0.0]
We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter.
We achieve raw single-shot measurement in excess of 98% across multiple samples using this approach in total measurement times under 500 ns.
arXiv Detail & Related papers (2020-08-05T20:20:40Z) - Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases [1.0828616610785522]
Quantum-enhanced sensing promises to improve the performance of sensing tasks using non-classical probes and measurements.
We propose a distributed distributed sensing framework that uses an entangled quantum probe to estimate a scene- parameter encoded within an array of phases.
We apply our framework to examples as diverse as radio-frequency phased-array directional radar, beam-displacement tracking for atomic-force microscopy, and fiber-based temperature gradiometry.
arXiv Detail & Related papers (2020-04-08T17:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.