Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases
- URL: http://arxiv.org/abs/2004.04152v3
- Date: Sat, 12 Jun 2021 00:07:41 GMT
- Title: Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases
- Authors: Michael R. Grace, Christos N. Gagatsos, Saikat Guha
- Abstract summary: Quantum-enhanced sensing promises to improve the performance of sensing tasks using non-classical probes and measurements.
We propose a distributed distributed sensing framework that uses an entangled quantum probe to estimate a scene- parameter encoded within an array of phases.
We apply our framework to examples as diverse as radio-frequency phased-array directional radar, beam-displacement tracking for atomic-force microscopy, and fiber-based temperature gradiometry.
- Score: 1.0828616610785522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum-enhanced sensing promises to improve the performance of sensing tasks
using non-classical probes and measurements that require far fewer
scene-modulated photons than the best classical schemes, thereby granting
previously-inaccessible information about a wide range of physical systems. We
propose a generalized distributed sensing framework that uses an entangled
quantum probe to estimate a scene-parameter encoded within an array of phases,
with a functional dependence on that parameter determined by the physics of the
actual system. The receiver uses a laser light source enhanced by
quantum-entangled multi-partite squeezed-vacuum light to probe the phases and
thereby estimate the desired scene-parameter. The entanglement suppresses the
collective quantum vacuum noise across the phase array. We report simple
analytical expressions for the Cram\'er Rao bound that depend only on the
optical probes and the physical model of the measured system, and we show that
our structured receiver asymptotically saturates the quantum Cram\'er-Rao bound
in the lossless case. Our approach enables Heisenberg limited precision in
estimating a scene-parameter with respect to total probe energy, as well as
with respect to the number of modulated phases. Furthermore, we study the
impact of uniform loss in our system and examine the behavior of both the
quantum and the classical Cram\'er-Rao bounds. We apply our framework to
examples as diverse as radio-frequency phased-array directional radar,
beam-displacement tracking for atomic-force microscopy, and fiber-based
temperature gradiometry.
Related papers
- Pushing the Boundaries: Interferometric Mass Photometry at the Quantum Limit of Sensitivity [0.7864304771129751]
In comparison to the conventional confocal interferometric scattering (iSCAT) approach, our setup adds a second arm to form a Michelson interferometer.
We evaluate the quantum Cram'er-Rao bound (QCRB) for different quantum states, including single-mode coherent states, multi-frequency coherent states, and phase-averaged coherent states.
arXiv Detail & Related papers (2024-10-25T09:21:01Z) - Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator [0.0]
We implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator.
We show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity.
arXiv Detail & Related papers (2024-09-30T05:43:08Z) - Quantum Target Ranging for LiDAR [0.0]
We investigate Quantum Target Ranging in the context of multi-hypothesis testing and its applicability to real-world LiDAR systems.
We demonstrate that ranging is generally an easier task compared to the well-studied problem of target detection.
We then analyze the theoretical bounds and advantages of quantum ranging in the context of phase-insensitive measurements.
arXiv Detail & Related papers (2024-08-05T17:00:14Z) - On-demand shaped photon emission based on a parametrically modulated qubit [14.88027830561737]
A single-rail and dual-rail time-bin shaped photon generator can act as a quantum interface of a point-to-point quantum network.
We develop an efficient photon field measurement setup based on the data stream processing of GPU.
The results demonstrate that our method is hardware efficient, simple to implement, and scalable.
arXiv Detail & Related papers (2024-05-02T16:53:54Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Gaussian quantum metrology for mode-encoded parameters [0.0]
We identify ultimate sensitivity bounds for the estimation parameters encoded into quantum states of the electromagnetic field.
We show how the estimation sensitivity can be enhanced by adding squeezing into specific modes.
arXiv Detail & Related papers (2022-02-21T16:52:57Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Criticality-Enhanced Quantum Sensing via Continuous Measurement [1.433758865948252]
We propose a protocol for criticality-enhanced sensing via continuous observation of the emitted radiation quanta.
We derive universal scaling laws featuring transient and long-time behavior governed by the underlying critical exponents.
Our protocol is applicable to generic quantum-optical open sensors permitting continuous readout.
arXiv Detail & Related papers (2021-08-13T18:01:02Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.