From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices
- URL: http://arxiv.org/abs/2205.11247v6
- Date: Mon, 25 Mar 2024 13:57:10 GMT
- Title: From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices
- Authors: Thibaut Lacroix, Brendon W. Lovett, Alex W. Chin,
- Abstract summary: We study how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states.
We also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the downstream' kinetics of a functional' quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nanodevices exploiting quantum effects are critically important elements of future quantum technologies (QT), but their real-world performance is strongly limited by decoherence arising from local `environmental' interactions. Compounding this, as devices become more complex, i.e. contain multiple functional units, the `local' environments begin to overlap, creating the possibility of environmentally mediated decoherence phenomena on new time-and-length scales. Such complex and inherently non-Markovian dynamics could present a challenge for scaling up QT, but -- on the other hand -- the ability of environments to transfer `signals' and energy might also enable sophisticated spatiotemporal coordination of inter-component processes, as is suggested to happen in biological nanomachines, like enzymes and photosynthetic proteins. Exploiting numerically exact many body methods (tensor networks) we study a fully quantum model that allows us to explore how propagating environmental dynamics can instigate and direct the evolution of spatially remote, non-interacting quantum systems. We demonstrate how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states, and also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the `downstream' kinetics of a `functional' quantum system. With access to complete system-environment wave functions, we elucidate the microscopic processes underlying these phenomena, providing new insight into how they could be exploited for energy efficient quantum devices.
Related papers
- Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - A Proposed Quantum Hamiltonian Encoding Framework for Time Evolution
Operator Design of Potential Energy Function [1.2277343096128712]
This research delves into time evolution operation due to potential energy functions for applications spanning quantum chemistry and condensed matter physics.
The algorithms were implemented in simulators and IBM quantum hardware to prove their efficacy.
arXiv Detail & Related papers (2023-08-12T07:37:42Z) - Experimental optical simulator of reconfigurable and complex quantum
environment [0.0]
We demonstrate an optical simulator of a quantum system coupled to an arbitrary and reconfigurable environment.
We experimentally retrieve typical features of open quantum system dynamics.
This opens the way to the experimental tests of open quantum systems in reconfigurable environments.
arXiv Detail & Related papers (2023-02-24T14:55:49Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Effects of disorder and interactions on environment assisted quantum
transport [0.0]
We show a surprising situation where the particle current grows with increasing disorder, even without dephasing.
We show that repulsive interactions are detrimental to ENAQT, and lead to an environment-hampered quantum transport.
arXiv Detail & Related papers (2020-05-09T15:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.