Cooperative Reinforcement Learning on Traffic Signal Control
- URL: http://arxiv.org/abs/2205.11291v1
- Date: Mon, 23 May 2022 13:25:15 GMT
- Title: Cooperative Reinforcement Learning on Traffic Signal Control
- Authors: Chi-Chun Chao, Jun-Wei Hsieh, Bor-Shiun Wang
- Abstract summary: Traffic signal control is a challenging real-world problem aiming to minimize overall travel time by coordinating vehicle movements at road intersections.
Existing traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods.
This paper proposes a cooperative, multi-objective architecture with age-decaying weights to better estimate multiple reward terms for traffic signal control optimization.
- Score: 3.759936323189418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic signal control is a challenging real-world problem aiming to minimize
overall travel time by coordinating vehicle movements at road intersections.
Existing traffic signal control systems in use still rely heavily on
oversimplified information and rule-based methods. Specifically, the
periodicity of green/red light alternations can be considered as a prior for
better planning of each agent in policy optimization. To better learn such
adaptive and predictive priors, traditional
RL-based methods can only return a fixed length from predefined action pool
with only local agents. If there is no cooperation between these agents, some
agents often make conflicts to other agents and thus decrease the whole
throughput. This paper proposes a cooperative, multi-objective architecture
with age-decaying weights to better estimate multiple reward terms for traffic
signal control optimization, which termed COoperative Multi-Objective
Multi-Agent Deep Deterministic Policy Gradient (COMMA-DDPG). Two types of
agents running to maximize rewards of different goals - one for local traffic
optimization at each intersection and the other for global traffic waiting time
optimization. The global agent is used to guide the local agents as a means for
aiding faster learning but not used in the inference phase. We also provide an
analysis of solution existence together with convergence proof for the proposed
RL optimization. Evaluation is performed using real-world traffic data
collected using traffic cameras from an Asian country. Our method can
effectively reduce the total delayed time by 60\%. Results demonstrate its
superiority when compared to SoTA methods.
Related papers
- Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
arXiv Detail & Related papers (2023-10-16T22:10:47Z) - Cooperative Multi-Objective Reinforcement Learning for Traffic Signal
Control and Carbon Emission Reduction [3.3454373538792552]
We propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient.
MOMA-DDPG estimates multiple reward terms for traffic signal control optimization using age-decaying weights.
Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics.
arXiv Detail & Related papers (2023-06-16T07:37:05Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLight is a new multi-agent reinforcement learning method for traffic signal control.
It learns cooperative traffic control policies by estimating the individual marginal contribution of agents on their local neighborhood.
We benchmark our trained network against state-of-the-art traffic signal control methods on standard benchmarks in two traffic simulators.
arXiv Detail & Related papers (2023-04-20T12:41:25Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
offline reinforcement learning (RL) algorithms can be transferred to multi-agent settings directly.
We propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge.
OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.
arXiv Detail & Related papers (2021-11-22T13:27:42Z) - Decentralized Cooperative Lane Changing at Freeway Weaving Areas Using
Multi-Agent Deep Reinforcement Learning [1.6752182911522522]
Frequent lane changes during congestion at freeway bottlenecks such as merge and weaving areas further reduce roadway capacity.
The emergence of deep reinforcement learning (RL) and connected and automated vehicle technology provides a possible solution to improve mobility and energy efficiency at freeway bottlenecks through cooperative lane changing.
In this study, a decentralized cooperative lane-changing controller was developed using a multi-agent deep RL paradigm.
The results of this study show that cooperative lane changing enabled by multi-agent deep RL yields superior performance to human drivers in term of traffic throughput, vehicle speed, number of stops per vehicle, vehicle fuel efficiency, and emissions.
arXiv Detail & Related papers (2021-10-05T18:29:13Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.