Cooperative Multi-Objective Reinforcement Learning for Traffic Signal
Control and Carbon Emission Reduction
- URL: http://arxiv.org/abs/2306.09662v2
- Date: Sun, 16 Jul 2023 07:29:23 GMT
- Title: Cooperative Multi-Objective Reinforcement Learning for Traffic Signal
Control and Carbon Emission Reduction
- Authors: Cheng Ruei Tang, Jun Wei Hsieh, and Shin You Teng
- Abstract summary: We propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient.
MOMA-DDPG estimates multiple reward terms for traffic signal control optimization using age-decaying weights.
Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics.
- Score: 3.3454373538792552
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Existing traffic signal control systems rely on oversimplified rule-based
methods, and even RL-based methods are often suboptimal and unstable. To
address this, we propose a cooperative multi-objective architecture called
Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (MOMA-DDPG),
which estimates multiple reward terms for traffic signal control optimization
using age-decaying weights. Our approach involves two types of agents: one
focuses on optimizing local traffic at each intersection, while the other aims
to optimize global traffic throughput. We evaluate our method using real-world
traffic data collected from an Asian country's traffic cameras. Despite the
inclusion of a global agent, our solution remains decentralized as this agent
is no longer necessary during the inference stage. Our results demonstrate the
effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all
performance metrics. Additionally, our proposed system minimizes both waiting
time and carbon emissions. Notably, this paper is the first to link carbon
emissions and global agents in traffic signal control.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Cooperative Reinforcement Learning on Traffic Signal Control [3.759936323189418]
Traffic signal control is a challenging real-world problem aiming to minimize overall travel time by coordinating vehicle movements at road intersections.
Existing traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods.
This paper proposes a cooperative, multi-objective architecture with age-decaying weights to better estimate multiple reward terms for traffic signal control optimization.
arXiv Detail & Related papers (2022-05-23T13:25:15Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Effects of Smart Traffic Signal Control on Air Quality [0.0]
Multi-agent deep reinforcement learning (MARL) has been studied experimentally in traffic systems.
A recently developed multi-agent variant of the well-established advantage actor-critic (A2C) algorithm, called MA2C, exploits the promising idea of some communication among the agents.
In this view, the agents share their strategies with other neighbor agents, thereby stabilizing the learning process even when the agents grow in number and variety.
arXiv Detail & Related papers (2021-07-06T02:48:42Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning [20.385286762476436]
Inefficient traffic control may cause numerous problems such as traffic congestion and energy waste.
This paper proposes a novel multi-agent reinforcement learning method, named KS-DDPG, to achieve optimal control by enhancing the cooperation between traffic signals.
arXiv Detail & Related papers (2021-04-20T12:53:08Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved.
arXiv Detail & Related papers (2020-10-30T22:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.