論文の概要: Active Learning Through a Covering Lens
- arxiv url: http://arxiv.org/abs/2205.11320v1
- Date: Mon, 23 May 2022 14:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 04:46:09.349770
- Title: Active Learning Through a Covering Lens
- Title(参考訳): カバーレンズによる能動学習
- Authors: Ofer Yehuda, Avihu Dekel, Guy Hacohen, Daphna Weinshall
- Abstract要約: ディープラーニングは、ディープニューラルネットワークのアノテーションコストを削減することを目的としている。
低予算体制のための新しいアクティブラーニングアルゴリズムであるProbCoverを提案する。
いくつかの画像認識ベンチマークにおいて,我々の原理的アクティブラーニング戦略は,低予算体制の最先端性を向上することを示す。
- 参考スコア(独自算出の注目度): 7.952582509792972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep active learning aims to reduce the annotation cost for deep neural
networks, which are notoriously data-hungry. Until recently, deep active
learning methods struggled in the low-budget regime, where only a small amount
of samples are annotated. The situation has been alleviated by recent advances
in self-supervised representation learning methods, which impart the geometry
of the data representation with rich information about the points. Taking
advantage of this progress, we study the problem of subset selection for
annotation through a "covering" lens, proposing ProbCover -- a new active
learning algorithm for the low budget regime, which seeks to maximize
Probability Coverage. We describe a dual way to view our formulation, from
which one can derive strategies suitable for the high budget regime of active
learning, related to existing methods like Coreset. We conclude with extensive
experiments, evaluating ProbCover in the low budget regime. We show that our
principled active learning strategy improves the state-of-the-art in the
low-budget regime in several image recognition benchmarks. This method is
especially beneficial in semi-supervised settings, allowing state-of-the-art
semi-supervised methods to achieve high accuracy with only a few labels.
- Abstract(参考訳): deep active learningは、データ不足の悪名高いディープニューラルネットワークのアノテーションコストを削減することを目的としている。
近年まで、少量のサンプルが注釈付けされる低予算体制下で、深いアクティブな学習方法が苦労していた。
自己教師付き表現学習手法の最近の進歩により,データ表現の幾何学的構造に点に関する豊富な情報を与える状況が緩和されている。
この進歩を生かして,「被覆」レンズを通してアノテーションのサブセット選択の問題について検討し,確率範囲を最大化しようとする低予算体制のための新しいアクティブ学習アルゴリズムであるprobcoverを提案する。
当社の定式化を両立させる方法として,Coresetのような既存の手法に関連する,アクティブラーニングの高予算体制に適した戦略を導出する方法について述べる。
我々は,低予算体制におけるプロブカバーの評価と広範囲な実験で締めくくった。
いくつかの画像認識ベンチマークにおいて,我々の原理的アクティブラーニング戦略は,低予算体制の最先端性を向上することを示す。
この手法は特に半教師付き設定において有益であり、最先端の半教師付き手法は少数のラベルで高い精度を達成できる。
関連論文リスト
- Enhancing Active Learning for Sentinel 2 Imagery through Contrastive Learning and Uncertainty Estimation [0.0]
本稿では,衛星画像解析におけるラベル効率の向上を目的とした新しい手法を提案する。
提案手法は,モンテカルロ・ドロップアウトによる不確実性推定とともに,コントラスト学習を利用する。
本研究は,提案手法が他のいくつかの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-22T01:54:51Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
ストリームベースとプールベースの両方のアクティブラーニングをニューラルネットワーク近似を用いて検討する。
ストリームベースおよびプールベースアクティブラーニングのためのニューラルネットワークを新たに設計したエクスプロイトと探索に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-18T21:52:14Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
線形関数近似による強化学習と,コスト関数の逆変化について検討した。
本稿では,未知のダイナミクスと帯域幅フィードバックの一般設定に挑戦する,計算効率のよいポリシ最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T17:26:39Z) - Budget-aware Few-shot Learning via Graph Convolutional Network [56.41899553037247]
本稿では,いくつかの例から新しい視覚概念を学習することを目的とした,数ショット学習の課題に取り組む。
数ショット分類における一般的な問題設定は、データラベルの取得においてランダムサンプリング戦略を前提としている。
そこで我々は,新しい対象カテゴリーの学習を目的とした,予算に配慮した数発の学習問題を新たに導入する。
論文 参考訳(メタデータ) (2022-01-07T02:46:35Z) - A Simple Baseline for Low-Budget Active Learning [15.54250249254414]
簡単なk平均クラスタリングアルゴリズムは、低予算で最先端のアクティブな学習方法より優れていることを示す。
この方法は,画像分類に基づく低予算能動学習のための単純なベースラインとして利用することができる。
論文 参考訳(メタデータ) (2021-10-22T19:36:56Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
教師付き環境下での能動学習に比較学習の損失を生かして教師付き能動学習を導入する。
多様な特徴表現の情報的データサンプルを選択するアンバイアスなクエリ戦略を提案する。
提案手法は,アクティブな学習環境において,サンプリングバイアスを低減し,最先端の精度を実現し,モデルの校正を行う。
論文 参考訳(メタデータ) (2021-09-13T20:58:40Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
本稿では,情報的サンプルを効果的に選択するための,不確実性と分散性を考慮した新しい能動的学習手法である信頼コアセットを提案する。
2つの医用画像解析タスクの比較実験により,本手法が他の活動的学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-05T13:46:16Z) - Average Reward Adjusted Discounted Reinforcement Learning:
Near-Blackwell-Optimal Policies for Real-World Applications [0.0]
強化学習は、与えられたマルコフ決定プロセスの最適な定常ポリシーを見つけることを目的としている。
本稿では,広く適用されている標準割引強化学習フレームワークについて,理論的考察を行う。
我々はブラックウェル-最適強化学習アルゴリズムを新たに構築する。
論文 参考訳(メタデータ) (2020-04-02T08:05:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。