UNet#: A UNet-like Redesigning Skip Connections for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2205.11759v1
- Date: Tue, 24 May 2022 03:40:48 GMT
- Title: UNet#: A UNet-like Redesigning Skip Connections for Medical Image
Segmentation
- Authors: Ledan Qian, Xiao Zhou, Yi Li, Zhongyi Hu
- Abstract summary: We propose a novel network structure combining dense skip connections and full-scale skip connections, named UNet-sharp (UNet#) for its shape similar to symbol #.
The proposed UNet# can aggregate feature maps of different scales in the decoder sub-network and capture fine-grained details and coarse-grained semantics from the full scale.
- Score: 13.767615201220138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an essential prerequisite for developing a medical intelligent assistant
system, medical image segmentation has received extensive research and
concentration from the neural network community. A series of UNet-like networks
with encoder-decoder architecture has achieved extraordinary success, in which
UNet2+ and UNet3+ redesign skip connections, respectively proposing dense skip
connection and full-scale skip connection and dramatically improving compared
with UNet in medical image segmentation. However, UNet2+ lacks sufficient
information explored from the full scale, which will affect the learning of
organs' location and boundary. Although UNet3+ can obtain the full-scale
aggregation feature map, owing to the small number of neurons in the structure,
it does not satisfy the segmentation of tiny objects when the number of samples
is small. This paper proposes a novel network structure combining dense skip
connections and full-scale skip connections, named UNet-sharp (UNet\#) for its
shape similar to symbol \#. The proposed UNet\# can aggregate feature maps of
different scales in the decoder sub-network and capture fine-grained details
and coarse-grained semantics from the full scale, which benefits learning the
exact location and accurately segmenting the boundary of organs or lesions. We
perform deep supervision for model pruning to speed up testing and make it
possible for the model to run on mobile devices; furthermore, designing two
classification-guided modules to reduce false positives achieves more accurate
segmentation results. Various experiments of semantic segmentation and instance
segmentation on different modalities (EM, CT, MRI) and dimensions (2D, 3D)
datasets, including the nuclei, brain tumor, liver, and lung, demonstrate that
the proposed method outperforms state-of-the-art models.
Related papers
- MAProtoNet: A Multi-scale Attentive Interpretable Prototypical Part Network for 3D Magnetic Resonance Imaging Brain Tumor Classification [25.056170817680403]
We propose a Multi-scale Attentive Prototypical part Network, termed MAProtoNet, to provide more precise maps for attribution.
Specifically, we introduce a concise multi-scale module to merge attentive features from quadruplet attention layers, and produces attribution maps.
Compared to existing interpretable part networks in medical imaging, MAProtoNet can achieve state-of-the-art performance in localization.
arXiv Detail & Related papers (2024-04-13T07:30:17Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
Multi-dimensional attention segmentation model with cascade multi-scale convolution is proposed to predict accurate segmentation for small objects in medical images.
The proposed method is evaluated on three datasets: KiTS19, Pancreas CT of Decathlon-10, and MICCAI 2018 LiTS Challenge.
arXiv Detail & Related papers (2020-11-15T13:54:22Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z) - UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation [20.558512044987125]
We propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions.
The proposed method is especially benefiting for organs that appear at varying scales.
arXiv Detail & Related papers (2020-04-19T08:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.