論文の概要: Weak Convergence of Approximate reflection coupling and its Application
to Non-convex Optimization
- arxiv url: http://arxiv.org/abs/2205.11970v1
- Date: Tue, 24 May 2022 11:08:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 15:09:25.686575
- Title: Weak Convergence of Approximate reflection coupling and its Application
to Non-convex Optimization
- Title(参考訳): 近似反射結合の弱収束と非凸最適化への応用
- Authors: Keisuke Suzuki
- Abstract要約: 微分方程式(SDE)に対する結合(RC)の弱い近似を提案する。
提案されたRC結合(ARC)の近似時間とは対照的に、ARCは異なる用語でSDEに対して効果的に動作する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a weak approximation of the reflection coupling
(RC) for stochastic differential equations (SDEs), and prove it converges
weakly to the desired coupling. In contrast to the RC, the proposed approximate
reflection coupling (ARC) need not take the hitting time of processes to the
diagonal set into consideration and can be defined as the solution of some SDEs
on the whole time interval. Therefore, ARC can work effectively against SDEs
with different drift terms. As an application of ARC, an evaluation on the
effectiveness of the stochastic gradient descent in a non-convex setting is
also described. For the sample size $n$, the step size $\eta$, and the batch
size $B$, we derive uniform evaluations on the time with orders $n^{-1}$,
$\eta^{1/2}$, and $\sqrt{(n - B) / B (n - 1)}$, respectively.
- Abstract(参考訳): 本稿では,確率微分方程式(sdes)に対する反射結合(rc)の弱近似を提案し,所望の結合に弱収束することを証明する。
RCとは対照的に、提案された近似反射結合(ARC)は、プロセスの打点時間を対角線に向ける必要がなく、時間間隔全体におけるいくつかのSDEの解として定義することができる。
したがって、ARCは異なるドリフト項を持つSDEに対して効果的に動作する。
ARCの適用例として,非凸条件下での確率勾配降下の有効性の評価について述べる。
サンプルサイズが$n$, ステップサイズが$\eta$, バッチサイズが$B$に対して, それぞれ$n^{-1}$, $\eta^{1/2}$, $\sqrt{(n - B) / B (n - 1)}$の順に均一な評価を導出する。
関連論文リスト
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
複素勾配問題に対する2つの分散化ZO推定器を提案する。
我々は、現在最先端の機能複雑性を$mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$から$tildecalOleft(fracdepsilon2right)$に改善する。
論文 参考訳(メタデータ) (2024-10-03T15:04:01Z) - Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
ばらつき低減技術はサンプリングのばらつきを低減し、一階法(FO)とゼロ階法(ZO)の収束率を向上するように設計されている。
複合最適化問題において、ZO法は、ランダム推定から導かれる座標ワイド分散と呼ばれる追加の分散に遭遇する。
本稿では,ZPDVR法とZPDVR法を提案する。
論文 参考訳(メタデータ) (2024-05-28T02:27:53Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Stochastic Zeroth order Descent with Structured Directions [10.604744518360464]
我々は, 有限差分法であるStructured Zeroth Order Descent (SSZD)を導入・解析し, 集合 $lleq d 方向の勾配を近似し, $d は周囲空間の次元である。
凸凸に対して、すべての$c1/2$に対して$O( (d/l) k-c1/2$)$ 上の関数の収束はほぼ確実に証明する。
論文 参考訳(メタデータ) (2022-06-10T14:00:06Z) - Distributed Random Reshuffling over Networks [7.013052033764372]
凸関数と滑らかな対象関数の問題を解くために分散resh-upr (D-RR) アルゴリズムを提案する。
特に、滑らかな凸対象関数に対して、D-RRはD-T収束率(T がエポック数を数える)を大域ドライブ間の距離で達成する。
論文 参考訳(メタデータ) (2021-12-31T03:59:37Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Lattice partition recovery with dyadic CART [79.96359947166592]
我々は、$d$次元格子上の加法ガウス雑音によって破損したピースワイド定値信号について検討する。
この形式のデータは、多くのアプリケーションで自然に発生し、統計処理や信号処理の文献において、信号の検出やテスト、ノイズの除去、推定といったタスクが広く研究されている。
本稿では,未知の信号の一貫性領域によって誘導される格子の分割を推定する,分割回復の問題について考察する。
我々は、DCARTベースの手順が、下位分割を$sigma2 k*の順序で一貫して推定することを証明した。
論文 参考訳(メタデータ) (2021-05-27T23:41:01Z) - Improving the Transient Times for Distributed Stochastic Gradient
Methods [5.215491794707911]
拡散適応段階法(EDAS)と呼ばれる分散勾配アルゴリズムについて検討する。
EDASが集中勾配降下(SGD)と同じネットワーク独立収束率を達成することを示す。
我々の知る限り、EDASは$n$のコスト関数の平均が強い凸である場合に最も短い時間を達成する。
論文 参考訳(メタデータ) (2021-05-11T08:09:31Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
我々は,非log-concaveとなる分布のクラスからサンプリングするために,勾配ランゲヴィンダイナミクス(SGLD)の新たな収束解析を行う。
我々のアプローチの核心は、補助的時間反転型マルコフ連鎖を用いたSGLDのコンダクタンス解析である。
論文 参考訳(メタデータ) (2020-10-19T15:23:18Z) - Efficiently Solving MDPs with Stochastic Mirror Descent [38.30919646721354]
線形モデルに与えられた無限水平マルコフ決定過程(MDP)を近似的に解くための統一的な枠組みを提案する。
これらの結果は、より一般的なミラー降下フレームワークを用いて、単純なドメインとボックスドメインで大域的なサドルポイント問題を解くことによって達成される。
論文 参考訳(メタデータ) (2020-08-28T17:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。