Interaction of a priori Anatomic Knowledge with Self-Supervised
Contrastive Learning in Cardiac Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2205.12429v1
- Date: Wed, 25 May 2022 01:33:37 GMT
- Title: Interaction of a priori Anatomic Knowledge with Self-Supervised
Contrastive Learning in Cardiac Magnetic Resonance Imaging
- Authors: Makiya Nakashima, Inyeop Jang, Ramesh Basnet, Mitchel Benovoy, W.H.
Wilson Tang, Christopher Nguyen, Deborah Kwon, Tae Hyun Hwang, David Chen
- Abstract summary: Self-supervised contrastive learning has been shown to boost performance in several medical imaging tasks.
In this work, we evaluate the optimal method of incorporating prior knowledge of anatomy into a SSCL training paradigm.
We find that using a priori knowledge of anatomy can greatly improve the downstream diagnostic performance.
- Score: 0.7387261884863349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training deep learning models on cardiac magnetic resonance imaging (CMR) can
be a challenge due to the small amount of expert generated labels and inherent
complexity of data source. Self-supervised contrastive learning (SSCL) has
recently been shown to boost performance in several medical imaging tasks.
However, it is unclear how much the pre-trained representation reflects the
primary organ of interest compared to spurious surrounding tissue. In this
work, we evaluate the optimal method of incorporating prior knowledge of
anatomy into a SSCL training paradigm. Specifically, we evaluate using a
segmentation network to explicitly local the heart in CMR images, followed by
SSCL pretraining in multiple diagnostic tasks. We find that using a priori
knowledge of anatomy can greatly improve the downstream diagnostic performance.
Furthermore, SSCL pre-training with in-domain data generally improved
downstream performance and more human-like saliency compared to end-to-end
training and ImageNet pre-trained networks. However, introducing anatomic
knowledge to pre-training generally does not have significant impact.
Related papers
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.