Additive Logistic Mechanism for Privacy-Preserving Self-Supervised
Learning
- URL: http://arxiv.org/abs/2205.12430v1
- Date: Wed, 25 May 2022 01:33:52 GMT
- Title: Additive Logistic Mechanism for Privacy-Preserving Self-Supervised
Learning
- Authors: Yunhao Yang, Parham Gohari, Ufuk Topcu
- Abstract summary: We study the privacy risks that are associated with training a neural network's weights with self-supervised learning algorithms.
We design a post-training privacy-protection algorithm that adds noise to the fine-tuned weights.
We show that the proposed protection algorithm can effectively reduce the attack accuracy to roughly 50%-equivalent to random guessing.
- Score: 26.783944764936994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the privacy risks that are associated with training a neural
network's weights with self-supervised learning algorithms. Through empirical
evidence, we show that the fine-tuning stage, in which the network weights are
updated with an informative and often private dataset, is vulnerable to privacy
attacks. To address the vulnerabilities, we design a post-training
privacy-protection algorithm that adds noise to the fine-tuned weights and
propose a novel differential privacy mechanism that samples noise from the
logistic distribution. Compared to the two conventional additive noise
mechanisms, namely the Laplace and the Gaussian mechanisms, the proposed
mechanism uses a bell-shaped distribution that resembles the distribution of
the Gaussian mechanism, and it satisfies pure $\epsilon$-differential privacy
similar to the Laplace mechanism. We apply membership inference attacks on both
unprotected and protected models to quantify the trade-off between the models'
privacy and performance. We show that the proposed protection algorithm can
effectively reduce the attack accuracy to roughly 50\%-equivalent to random
guessing-while maintaining a performance loss below 5\%.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Privacy Amplification via Shuffled Check-Ins [2.3333090554192615]
We study a protocol for distributed computation called shuffled check-in.
It achieves strong privacy guarantees without requiring any further trust assumptions beyond a trusted shuffler.
We show that shuffled check-in achieves tight privacy guarantees through privacy amplification.
arXiv Detail & Related papers (2022-06-07T09:55:15Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Bridging Differential Privacy and Byzantine-Robustness via Model
Aggregation [27.518542543750367]
This paper aims at addressing conflicting issues in federated learning: differential privacy and Byzantinerobustness.
Standard mechanisms add transmitted DP, envelops entangles with robust gradient aggregation to defend against Byzantine attacks.
We show that the influence of our proposed mechanisms is deperturbed with that robust model aggregation.
arXiv Detail & Related papers (2022-04-29T23:37:46Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.