LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly
Supervised Text Classification
- URL: http://arxiv.org/abs/2205.12528v1
- Date: Wed, 25 May 2022 06:46:48 GMT
- Title: LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly
Supervised Text Classification
- Authors: Dheeraj Mekala, Chengyu Dong, Jingbo Shang
- Abstract summary: Pseudo-labels are noisy due to their nature, so selecting the correct ones has a huge potential for performance boost.
We propose a novel pseudo-label selection method LOPS that memorize takes learning order of samples into consideration.
LOPS can be viewed as a strong performance-boost plug-in to most of existing weakly-supervised text classification methods.
- Score: 28.37907856670151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly supervised text classification methods typically train a deep neural
classifier based on pseudo-labels. The quality of pseudo-labels is crucial to
final performance but they are inevitably noisy due to their heuristic nature,
so selecting the correct ones has a huge potential for performance boost. One
straightforward solution is to select samples based on the softmax probability
scores in the neural classifier corresponding to their pseudo-labels. However,
we show through our experiments that such solutions are ineffective and
unstable due to the erroneously high-confidence predictions from poorly
calibrated models. Recent studies on the memorization effects of deep neural
models suggest that these models first memorize training samples with clean
labels and then those with noisy labels. Inspired by this observation, we
propose a novel pseudo-label selection method LOPS that takes learning order of
samples into consideration. We hypothesize that the learning order reflects the
probability of wrong annotation in terms of ranking, and therefore, propose to
select the samples that are learnt earlier. LOPS can be viewed as a strong
performance-boost plug-in to most of existing weakly-supervised text
classification methods, as confirmed in extensive experiments on four
real-world datasets.
Related papers
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Combining Self-labeling with Selective Sampling [2.0305676256390934]
This work combines self-labeling techniques with active learning in a selective sampling scenario.
We show that naive application of self-labeling can harm performance by introducing bias towards selected classes.
The proposed method matches current selective sampling methods or achieves better results.
arXiv Detail & Related papers (2023-01-11T11:58:45Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - Filter and evolve: progressive pseudo label refining for semi-supervised
automatic speech recognition [5.735000563764309]
Low quality pseudo labels can misguide decision boundaries and degrade performance.
We propose a simple yet effective strategy to filter low quality pseudo labels.
Experiments on LibriSpeech show that these filtered samples enable the refined model to yield more correct predictions.
arXiv Detail & Related papers (2022-10-28T16:15:58Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.