論文の概要: Is a Question Decomposition Unit All We Need?
- arxiv url: http://arxiv.org/abs/2205.12538v1
- Date: Wed, 25 May 2022 07:24:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 10:17:22.388123
- Title: Is a Question Decomposition Unit All We Need?
- Title(参考訳): 質問分解ユニットは 必要なだけなのか?
- Authors: Pruthvi Patel, Swaroop Mishra, Mihir Parmar, Chitta Baral
- Abstract要約: モデルを解くのが比較的容易な、より単純な質問の集合に、人間が難解な質問を分解できるかどうかを検討する。
我々は、様々な推論形式を含むデータセットを解析し、モデルの性能を大幅に改善することは実際に可能であることを発見した。
以上の結果から,Human-in-the-loop Question Decomposition (HQD) が大規模LM構築の代替となる可能性が示唆された。
- 参考スコア(独自算出の注目度): 20.66688303609522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LMs) have achieved state-of-the-art performance on
many Natural Language Processing (NLP) benchmarks. With the growing number of
new benchmarks, we build bigger and more complex LMs. However, building new LMs
may not be an ideal option owing to the cost, time and environmental impact
associated with it. We explore an alternative route: can we modify data by
expressing it in terms of the model's strengths, so that a question becomes
easier for models to answer? We investigate if humans can decompose a hard
question into a set of simpler questions that are relatively easier for models
to solve. We analyze a range of datasets involving various forms of reasoning
and find that it is indeed possible to significantly improve model performance
(24% for GPT3 and 29% for RoBERTa-SQuAD along with a symbolic calculator) via
decomposition. Our approach provides a viable option to involve people in NLP
research in a meaningful way. Our findings indicate that Human-in-the-loop
Question Decomposition (HQD) can potentially provide an alternate path to
building large LMs.
- Abstract(参考訳): 大規模言語モデル(LM)は多くの自然言語処理(NLP)ベンチマークで最先端のパフォーマンスを達成した。
新たなベンチマークの増加に伴い、我々はより大きくより複雑なLMを構築します。
しかし、新しいLMの構築はコスト、時間、環境の影響で理想的な選択肢ではないかもしれない。
モデルの強みという観点からデータを表現することで、モデルが答えられるように、データを変更することができるのか?
モデルを解くのが比較的容易な単純な質問の集合に、人間が難しい質問を分解できるかどうかを検討する。
我々は,様々な推論形式を含むデータセットを解析し,モデル性能(GPT3では24%,RoBERTa-SQuADでは29%,シンボリック計算機では29%)を分解的に向上させることができることを確認した。
当社のアプローチは、NLP研究を有意義に行うための実行可能な選択肢を提供します。
以上の結果から,Human-in-the-loop Question Decomposition (HQD) が大規模LM構築の代替となる可能性が示唆された。
関連論文リスト
- Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - Look Before You Leap: A Universal Emergent Decomposition of Retrieval
Tasks in Language Models [58.57279229066477]
本研究では,言語モデル(LM)が様々な状況下での検索タスクをどのように解決するかを検討する。
ORIONは6つのドメインにまたがる構造化された検索タスクの集合である。
LMは内部的にモジュール方式で検索タスクを分解する。
論文 参考訳(メタデータ) (2023-12-13T18:36:43Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
人為的なデータに基づく微調整言語モデル(LM)が普及している。
我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。
ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:17:43Z) - Small Language Models Fine-tuned to Coordinate Larger Language Models
improve Complex Reasoning [41.03267013352519]
大きな言語モデル(LLM)は、印象的な推論能力を示すチェーン・オブ・シントを生成するように促された。
本稿では、分解生成器を用いて複雑な問題をより少ない推論ステップを必要とするサブプロブレムに分解するDaSLaMを紹介する。
本稿では,DaSLaMがスケール関数としての解の能力に制限されないことを示す。
論文 参考訳(メタデータ) (2023-10-21T15:23:20Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
最近の研究は、大規模言語モデル(LM)の機能を活用して、数ショットで複雑な質問応答を行う。
そこでは、複雑なタスクを単純なタスクに繰り返し分解し、それを解決し、最終解を得るまでプロセスを繰り返します。
我々の最良のモデル(逐次プロンプト付き)は、DROPデータセットの数ショットバージョンにおいて、5%の絶対F1の改善を実現します。
論文 参考訳(メタデータ) (2022-12-08T06:03:38Z) - ManyModalQA: Modality Disambiguation and QA over Diverse Inputs [73.93607719921945]
本稿では, エージェントが3つの異なるモダリティを考慮し, 質問に答えなければならない, マルチモーダルな質問応答課題, ManyModalQAを提案する。
われわれはウィキペディアをスクラップしてデータを収集し、クラウドソーシングを利用して質問と回答のペアを収集する。
論文 参考訳(メタデータ) (2020-01-22T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。