Meta-Learning for Physically-Constrained Neural System Identification
- URL: http://arxiv.org/abs/2501.06167v1
- Date: Fri, 10 Jan 2025 18:46:28 GMT
- Title: Meta-Learning for Physically-Constrained Neural System Identification
- Authors: Ankush Chakrabarty, Gordon Wichern, Vedang M. Deshpande, Abraham P. Vinod, Karl Berntorp, Christopher R. Laughman,
- Abstract summary: We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification.
We show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
- Score: 9.417562391585076
- License:
- Abstract: We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification. When applicable, we also incorporate domain-specific physical constraints to improve the accuracy of the NSSM. The major benefit of our approach is that instead of relying solely on data from a single target system, our framework utilizes data from a diverse set of source systems, enabling learning from limited target data, as well as with few online training iterations. Through benchmark examples, we demonstrate the potential of our approach, study the effect of fine-tuning subnetworks rather than full fine-tuning, and report real-world case studies to illustrate the practical application and generalizability of the approach to practical problems with physical-constraints. Specifically, we show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
Related papers
- MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models [6.031205224945912]
A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data.
This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions.
arXiv Detail & Related papers (2024-04-18T11:29:43Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems [0.0]
This paper presents a novel approach to observer design for nonlinear dynamical systems through meta-learning.
We introduce a framework that leverages information from measurements of the system output to design a learning-based KKL observer capable of online adaptation to a variety of system conditions and attributes.
arXiv Detail & Related papers (2023-10-30T12:25:14Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
We propose the use of model-agnostic meta-learning for constructing deep encoder network-based SSMs.
We demonstrate that meta-learning can result in more accurate neural SSM models than supervised- or transfer-learning.
arXiv Detail & Related papers (2022-11-14T22:03:35Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
arXiv Detail & Related papers (2022-05-25T07:54:10Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.