Unbiased and Efficient Sampling of Dependency Trees
- URL: http://arxiv.org/abs/2205.12621v1
- Date: Wed, 25 May 2022 09:57:28 GMT
- Title: Unbiased and Efficient Sampling of Dependency Trees
- Authors: Milo\v{s} Stanojevi\'c
- Abstract summary: Most treebanks require that every valid dependency tree has a single edge coming out of the ROOT node.
Zmigrod et al. have recently proposed algorithms for sampling with and without replacement from the single-root dependency tree distribution.
We show that their fastest algorithm for sampling with replacement, Wilson-RC, is in fact biased.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributions over spanning trees are the most common way of computational
modeling of dependency syntax. However, most treebanks require that every valid
dependency tree has a single edge coming out of the ROOT node, a constraint
that is not part of the definition of spanning trees. For this reason all
standard inference algorithms for spanning trees are sub-optimal for modeling
dependency trees.
Zmigrod et al. (2021b) have recently proposed algorithms for sampling with
and without replacement from the single-root dependency tree distribution. In
this paper we show that their fastest algorithm for sampling with replacement,
Wilson-RC, is in fact producing biased samples and we provide two alternatives
that are unbiased. Additionally, we propose two algorithms (one incremental,
one parallel) that reduce the asymptotic runtime of their algorithm for
sampling $k$ trees without replacement to $\mathcal{O}(kn^3)$. These algorithms
are both asymptotically and practically more efficient.
Related papers
- On Computing Optimal Tree Ensembles [7.424944196676223]
Random forests and, more generally, (decisionnobreakdash-)tree ensembles are widely used methods for classification and regression.
Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth.
We provide two novel algorithms and corresponding lower bounds.
arXiv Detail & Related papers (2023-06-07T13:30:43Z) - SoftTreeMax: Policy Gradient with Tree Search [72.9513807133171]
We introduce SoftTreeMax, the first approach that integrates tree-search into policy gradient.
On Atari, SoftTreeMax demonstrates up to 5x better performance in faster run-time compared with distributed PPO.
arXiv Detail & Related papers (2022-09-28T09:55:47Z) - bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition [2.28438857884398]
This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process.
It develops an efficient search solver that is able to solve practical instances faster than commercial solvers.
arXiv Detail & Related papers (2022-05-30T17:13:57Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - Efficient Sampling of Dependency Structures [39.5549669100436]
We adapt two spanning tree sampling algorithms to faithfully sample dependency trees from a graph subject to a root constraint.
We build upon Colbourn's algorithm and present a novel extension that can sample $K$ trees without replacement in $mathcalO(K N3 + K2 N)$ time.
arXiv Detail & Related papers (2021-09-14T08:33:12Z) - Robustifying Algorithms of Learning Latent Trees with Vector Variables [92.18777020401484]
We present the sample complexities of Recursive Grouping (RG) and Chow-Liu Recursive Grouping (CLRG)
We robustify RG, CLRG, Neighbor Joining (NJ) and Spectral NJ (SNJ) by using the truncated inner product.
We derive the first known instance-dependent impossibility result for structure learning of latent trees.
arXiv Detail & Related papers (2021-06-02T01:37:52Z) - On Finding the $K$-best Non-projective Dependency Trees [39.5549669100436]
We provide a simplification of the $K$-best spanning tree algorithm of Camerini et al. (1980).
We present a novel extension of the algorithm for decoding the $K$-best dependency trees of a graph which are subject to a root constraint.
arXiv Detail & Related papers (2021-06-01T20:23:41Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
Spectral Top-Down Recovery (STDR) is a divide-and-conquer approach for inference of large latent tree models.
STDR's partitioning step is non-random. Instead, it is based on the Fiedler vector of a suitable Laplacian matrix related to the observed nodes.
We prove that STDR is statistically consistent, and bound the number of samples required to accurately recover the tree with high probability.
arXiv Detail & Related papers (2021-02-26T02:47:42Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z) - An Efficient Adversarial Attack for Tree Ensembles [91.05779257472675]
adversarial attacks on tree based ensembles such as gradient boosting decision trees (DTs) and random forests (RFs)
We show that our method can be thousands of times faster than the previous mixed-integer linear programming (MILP) based approach.
Our code is available at https://chong-z/tree-ensemble-attack.
arXiv Detail & Related papers (2020-10-22T10:59:49Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
arXiv Detail & Related papers (2020-08-29T14:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.