論文の概要: Interpretable Feature Engineering for Time Series Predictors using
Attention Networks
- arxiv url: http://arxiv.org/abs/2205.12723v1
- Date: Mon, 23 May 2022 20:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 15:09:03.725029
- Title: Interpretable Feature Engineering for Time Series Predictors using
Attention Networks
- Title(参考訳): 注意ネットワークを用いた時系列予測器の解釈可能な特徴工学
- Authors: Tianjie Wang, Jie Chen, Joel Vaughan, and Vijayan N. Nair
- Abstract要約: マルチヘッドアテンションネットワークを用いて解釈可能な機能を開発し,優れた予測性能を実現する。
カスタマイズされたアテンション層は、乗法的相互作用を明示的に使用し、時間的ダイナミクスを擬似的にキャプチャする特徴エンジニアリングヘッドを構築する。
- 参考スコア(独自算出の注目度): 6.617546606897785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression problems with time-series predictors are common in banking and
many other areas of application. In this paper, we use multi-head attention
networks to develop interpretable features and use them to achieve good
predictive performance. The customized attention layer explicitly uses
multiplicative interactions and builds feature-engineering heads that capture
temporal dynamics in a parsimonious manner. Convolutional layers are used to
combine multivariate time series. We also discuss methods for handling static
covariates in the modeling process. Visualization and explanation tools are
used to interpret the results and explain the relationship between the inputs
and the extracted features. Both simulation and real dataset are used to
illustrate the usefulness of the methodology. Keyword: Attention heads, Deep
neural networks, Interpretable feature engineering
- Abstract(参考訳): 時系列予測器による回帰問題は、銀行や他の多くの応用分野でよく見られる。
本稿では,マルチヘッドアテンションネットワークを用いて解釈可能な特徴を開発し,予測性能を向上させる。
カスタマイズされた注目層は、乗法的相互作用を明示的に使用し、時間的ダイナミクスを擬似的に捉える特徴エンジニアリングヘッドを構築する。
畳み込み層は多変量時系列の組み合わせに用いられる。
また、モデリングプロセスにおける静的共変量を扱う方法についても論じる。
可視化と説明ツールは、結果を解釈し、入力と抽出された特徴の関係を説明するために使用される。
シミュレーションと実際のデータセットは、方法論の有用性を説明するために使われる。
キーワード:注意頭、ディープニューラルネットワーク、解釈可能な機能エンジニアリング
関連論文リスト
- Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
本稿では,時間ネットワークの表現を学習するための自己教師付き手法を提案する。
本稿では、時間的ネットワークの時間的参照経路を介して情報の流れをモデル化するための、繰り返しメッセージパッシングニューラルネットワークアーキテクチャを提案する。
提案手法は、Enron、COLAB、Facebookのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-08-22T22:50:46Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
本稿では,構築によって解釈可能な時系列予測のための新しいモジュール型ニューラルネットワークモデルを提案する。
リカレントニューラルネットワークはデータ内の時間的依存関係を学習し、アテンションベースの特徴選択コンポーネントは最も関連性の高い特徴を選択する。
モジュール型のディープネットワークは、選択した機能から独立してトレーニングされ、ユーザーが機能がどのように結果に影響を与えるかを示し、モデルを解釈できる。
論文 参考訳(メタデータ) (2023-11-28T14:51:06Z) - Neural Koopman prior for data assimilation [7.875955593012905]
ニューラルネットワークアーキテクチャを使って、潜在空間に動的システムを埋め込む。
本研究では,このようなモデルを長期の継続的再構築のために訓練する手法を提案する。
また,変動データ同化手法の先行として,訓練された動的モデルの有望な利用を示すとともに,自己教師型学習の可能性も示された。
論文 参考訳(メタデータ) (2023-09-11T09:04:36Z) - Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting [0.0]
時系列予測はデータサイエンスにおける根本的な課題である。
RNNとCNNを組み合わせた並列ディープラーニングフレームワークを開発した。
3つのデータセットに対する大規模な実験により,本手法の有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-05-08T17:20:13Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Ripple: Concept-Based Interpretation for Raw Time Series Models in
Education [5.374524134699487]
時系列は、教育予測タスクにおいて最も一般的な入力データである。
本稿では,グラフニューラルネットワークを用いた不規則な多変量時系列モデリングを用いて,同等あるいはより良い精度を実現する手法を提案する。
教育領域におけるこれらの進歩を分析し,早期学生のパフォーマンス予測の課題に対処する。
論文 参考訳(メタデータ) (2022-12-02T12:26:00Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。