On-demand multimode optical storage in a laser-written on-chip waveguide
- URL: http://arxiv.org/abs/2205.12762v1
- Date: Wed, 25 May 2022 13:25:04 GMT
- Title: On-demand multimode optical storage in a laser-written on-chip waveguide
- Authors: Ming-Xu Su, Tian-Xiang Zhu, Chao Liu, Zong-Quan Zhou, Chuan-Feng Li,
and Guang-Can Guo
- Abstract summary: We fabricate an on-chip waveguide in a $mathrm 151Eu3+:YSiO_5$ crystal with insertion losses of 0.2 dB.
We demonstrate the storage of 200 temporal modes using the AFC scheme and conditional on-demand storage of 100 temporal modes using the spin-wave AFC scheme.
- Score: 1.6230812246819801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum memory is a fundamental building block for large-scale quantum
networks. On-demand optical storage with a large bandwidth, a high multimode
capacity and an integrated structure simultaneously is crucial for practical
application. However, this has not been demonstrated yet. Here, we fabricate an
on-chip waveguide in a $\mathrm {^{151}Eu^{3+}:Y_2SiO_5}$ crystal with
insertion losses of 0.2 dB, and propose a novel pumping scheme to enable
spin-wave atomic frequency comb (AFC) storage with a bandwidth of 11 MHz inside
the waveguide. Based on this, we demonstrate the storage of 200 temporal modes
using the AFC scheme and conditional on-demand storage of 100 temporal modes
using the spin-wave AFC scheme. The interference visibility between the readout
light field and the reference light field is $99.0\% \pm 0.6\%$ and $97\% \pm
3\%$ for AFC and spin-wave AFC storage, respectively, indicating the coherent
nature of this low-loss, multimode and integrated storage device.
Related papers
- A Thin Film Lithium Niobate Near-Infrared Platform for Multiplexing Quantum Nodes [0.0]
Quantum networks will require quantum nodes consisting of many memory qubits.
This in turn will require strategies to multiplex memories and overcome the inhomogeneous distribution of their transition frequencies.
In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements.
arXiv Detail & Related papers (2024-05-07T00:13:46Z) - Multiplexed quantum repeaters with hot multimode alkali-noble gas memories [45.49722819849123]
We propose a non-cryogenic optical quantum memory for noble-gas nuclear spins based on the Atomic Frequency Comb protocol.
We discuss how these quantum memories can enhance rates in satellite quantum communication networks.
arXiv Detail & Related papers (2024-02-27T18:39:15Z) - Optical Memory in a Microfabricated Rubidium Vapor Cell [0.0]
We demonstrate a high-bandwidth optical memory using a warm alkali atom ensemble in a microfabricated vapor cell.
We explore a novel ground-state quantum memory scheme in the hyperfine Paschen-Back regime.
For a storage time of 80 ns we measure an end-to-end efficiency of $eta_e2etext80ns = 3.12(17)%$, corresponding to an internal efficiency of $eta_textinttext0ns = 24(3)%$.
arXiv Detail & Related papers (2023-07-17T14:58:13Z) - A Single-Photon-compatible Telecom-C-Band Quantum Memory in a Hot Atomic
Gas [0.0]
Storage and on-demand retrieval of quantum optical states compatible with the telecommunications C-band is a requirement for future terrestrial-based quantum optical networking.
We report on a telecommunication wavelength and bandwidth compatible quantum memory.
We demonstrate a total memory efficiency of $20.90(1),%$ with a Doppler-limited storage time of $1.10(2),$ns.
arXiv Detail & Related papers (2022-11-08T18:00:01Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Storage of photonic time-bin qubits for up to 20 ms in a rare-earth
doped crystal [0.0]
Long-duration quantum memories for photonic qubits are essential components for achieving long-distance quantum networks and repeaters.
In this work, we apply dynamical decoupling techniques and a small magnetic field to achieve the storage of six temporal modes for 20, 50 and 100 ms in a crystal.
The quantum coherence of the memory is verified by storing two time-bin qubits for 20 ms, with an average memory output fidelity of $F=(85pm 2)%$ for an average number of photons per qubit of $mu_textin$ = 0.92$pm$0.04
arXiv Detail & Related papers (2021-09-14T13:18:00Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Reliable coherent optical memory based on a laser-written waveguide [18.9011015272931]
We report the fabrication of type 2 waveguides in a $mathrm 151Eu3+:YSiO_5$ crystal using femto-laser micromachining.
The resulting waveguides are compatible with single-mode fibers and have the smallest insertion loss of $4.95 dB$.
On-demand light storage is demonstrated in a waveguide by employing the spin-wave atomic frequency comb (AFC) scheme and the revival of silenced echo (ROSE) scheme.
arXiv Detail & Related papers (2020-02-20T14:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.