New Intent Discovery with Pre-training and Contrastive Learning
- URL: http://arxiv.org/abs/2205.12914v1
- Date: Wed, 25 May 2022 17:07:25 GMT
- Title: New Intent Discovery with Pre-training and Contrastive Learning
- Authors: Yuwei Zhang, Haode Zhang, Li-Ming Zhan, Xiao-Ming Wu, Albert Y.S. Lam
- Abstract summary: New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes.
Existing approaches typically rely on a large amount of labeled utterances.
We propose a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering.
- Score: 21.25371293641141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: New intent discovery aims to uncover novel intent categories from user
utterances to expand the set of supported intent classes. It is a critical task
for the development and service expansion of a practical dialogue system.
Despite its importance, this problem remains under-explored in the literature.
Existing approaches typically rely on a large amount of labeled utterances and
employ pseudo-labeling methods for representation learning and clustering,
which are label-intensive, inefficient, and inaccurate. In this paper, we
provide new solutions to two important research questions for new intent
discovery: (1) how to learn semantic utterance representations and (2) how to
better cluster utterances. Particularly, we first propose a multi-task
pre-training strategy to leverage rich unlabeled data along with external
labeled data for representation learning. Then, we design a new contrastive
loss to exploit self-supervisory signals in unlabeled data for clustering.
Extensive experiments on three intent recognition benchmarks demonstrate the
high effectiveness of our proposed method, which outperforms state-of-the-art
methods by a large margin in both unsupervised and semi-supervised scenarios.
The source code will be available at
\url{https://github.com/zhang-yu-wei/MTP-CLNN}.
Related papers
- Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - IDAS: Intent Discovery with Abstractive Summarization [16.731183915325584]
We show that recent competitive methods in intent discovery can be outperformed by clustering utterances based on abstractive summaries.
We contribute the IDAS approach, which collects a set of descriptive utterance labels by prompting a Large Language Model.
The utterances and their resulting noisy labels are then encoded by a frozen pre-trained encoder, and subsequently clustered to recover the latent intents.
arXiv Detail & Related papers (2023-05-31T12:19:40Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) setting aims to categorize unlabeled training data coming from known and novel classes.
We propose Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem.
Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts.
arXiv Detail & Related papers (2022-12-11T20:06:14Z) - Novel Class Discovery without Forgetting [72.52222295216062]
We identify and formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery without Forgetting.
We propose a machine learning model to incrementally discover novel categories of instances from unlabeled data.
We introduce experimental protocols based on CIFAR-10, CIFAR-100 and ImageNet-1000 to measure the trade-off between knowledge retention and novel class discovery.
arXiv Detail & Related papers (2022-07-21T17:54:36Z) - Active Refinement for Multi-Label Learning: A Pseudo-Label Approach [84.52793080276048]
Multi-label learning (MLL) aims to associate a given instance with its relevant labels from a set of concepts.
Previous works of MLL mainly focused on the setting where the concept set is assumed to be fixed.
Many real-world applications require introducing new concepts into the set to meet new demands.
arXiv Detail & Related papers (2021-09-29T19:17:05Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
We are interested in identifying novel concepts in a dataset through representation learning based on the examples in both labeled and unlabeled classes.
We propose a learning approach, which naturally clusters examples in unseen classes using the compositional knowledge given by multiple supervised meta-classifiers on heterogeneous label spaces.
The proposed algorithm discovers novel concepts via a joint optimization of enhancing the discrimitiveness of unseen classes as well as learning the representations of known classes generalizable to novel ones.
arXiv Detail & Related papers (2021-06-29T11:51:57Z) - Discovering New Intents with Deep Aligned Clustering [19.11073686645496]
We propose an effective method, Deep Aligned Clustering, to discover new intents with the aid of limited known intent data.
With an unknown number of new intents, we predict the number of intent categories by eliminating low-confidence intent-wise clusters.
Experiments on two benchmark datasets show that our method is more robust and achieves substantial improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T14:32:06Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.