Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection
- URL: http://arxiv.org/abs/2010.02481v2
- Date: Sun, 11 Oct 2020 06:07:12 GMT
- Title: Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection
- Authors: Hoang Nguyen, Chenwei Zhang, Congying Xia, Philip S. Yu
- Abstract summary: Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
- Score: 69.2370349274216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot Intent Detection is challenging due to the scarcity of available
annotated utterances. Although recent works demonstrate that multi-level
matching plays an important role in transferring learned knowledge from seen
training classes to novel testing classes, they rely on a static similarity
measure and overly fine-grained matching components. These limitations inhibit
generalizing capability towards Generalized Few-shot Learning settings where
both seen and novel classes are co-existent. In this paper, we propose a novel
Semantic Matching and Aggregation Network where semantic components are
distilled from utterances via multi-head self-attention with additional dynamic
regularization constraints. These semantic components capture high-level
information, resulting in more effective matching between instances. Our
multi-perspective matching method provides a comprehensive matching measure to
enhance representations of both labeled and unlabeled instances. We also
propose a more challenging evaluation setting that considers classification on
the joint all-class label space. Extensive experimental results demonstrate the
effectiveness of our method. Our code and data are publicly available.
Related papers
- JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute
Decomposition-Aggregation [33.25304533086283]
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time.
Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios.
This work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts.
arXiv Detail & Related papers (2023-08-31T19:34:09Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) setting aims to categorize unlabeled training data coming from known and novel classes.
We propose Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem.
Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts.
arXiv Detail & Related papers (2022-12-11T20:06:14Z) - Label-enhanced Prototypical Network with Contrastive Learning for
Multi-label Few-shot Aspect Category Detection [17.228616743739412]
Multi-label aspect category detection allows a given review sentence to contain multiple aspect categories.
We propose a novel label-enhanced network (LPN) for multi-label few-shot aspect category detection.
arXiv Detail & Related papers (2022-06-14T02:37:44Z) - Joint Learning of Feature Extraction and Cost Aggregation for Semantic
Correspondence [30.488870941738636]
We propose a novel framework for jointly learning feature extraction and cost aggregation for semantic correspondence.
We present a confidence-aware contrastive loss function for learning the networks in a weakly-supervised manner.
arXiv Detail & Related papers (2022-04-05T12:45:49Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
We are interested in identifying novel concepts in a dataset through representation learning based on the examples in both labeled and unlabeled classes.
We propose a learning approach, which naturally clusters examples in unseen classes using the compositional knowledge given by multiple supervised meta-classifiers on heterogeneous label spaces.
The proposed algorithm discovers novel concepts via a joint optimization of enhancing the discrimitiveness of unseen classes as well as learning the representations of known classes generalizable to novel ones.
arXiv Detail & Related papers (2021-06-29T11:51:57Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels.
Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
arXiv Detail & Related papers (2020-10-11T14:42:18Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - FineGym: A Hierarchical Video Dataset for Fine-grained Action
Understanding [118.32912239230272]
FineGym is a new action recognition dataset built on top of gymnastic videos.
It provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy.
This new level of granularity presents significant challenges for action recognition.
arXiv Detail & Related papers (2020-04-14T17:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.