A Low Memory Footprint Quantized Neural Network for Depth Completion of
Very Sparse Time-of-Flight Depth Maps
- URL: http://arxiv.org/abs/2205.12918v1
- Date: Wed, 25 May 2022 17:11:31 GMT
- Title: A Low Memory Footprint Quantized Neural Network for Depth Completion of
Very Sparse Time-of-Flight Depth Maps
- Authors: Xiaowen Jiang, Valerio Cambareri, Gianluca Agresti, Cynthia Ifeyinwa
Ugwu, Adriano Simonetto, Fabien Cardinaux, Pietro Zanuttigh
- Abstract summary: We simulate ToF datasets for indoor 3D perception with challenging sparsity levels.
Our model achieves optimal depth map quality by means of input pre-processing and carefully tuned training.
We also achieve low memory footprint for weights and activations by means of mixed precision quantization-at-training techniques.
- Score: 14.885472968649937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sparse active illumination enables precise time-of-flight depth sensing as it
maximizes signal-to-noise ratio for low power budgets. However, depth
completion is required to produce dense depth maps for 3D perception. We
address this task with realistic illumination and sensor resolution constraints
by simulating ToF datasets for indoor 3D perception with challenging sparsity
levels. We propose a quantized convolutional encoder-decoder network for this
task. Our model achieves optimal depth map quality by means of input
pre-processing and carefully tuned training with a geometry-preserving loss
function. We also achieve low memory footprint for weights and activations by
means of mixed precision quantization-at-training techniques. The resulting
quantized models are comparable to the state of the art in terms of quality,
but they require very low GPU times and achieve up to 14-fold memory size
reduction for the weights w.r.t. their floating point counterpart with minimal
impact on quality metrics.
Related papers
- Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then exploits 3D point cloud data to predict the depth shift and the camera's focal length that allow us to recover 3D scene shapes.
We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot evaluation.
arXiv Detail & Related papers (2022-08-28T16:20:14Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
We propose a novel end-to-end learning approach for depth from diffracted rotation.
Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation.
arXiv Detail & Related papers (2022-04-14T16:14:37Z) - Sparse Depth Completion with Semantic Mesh Deformation Optimization [4.03103540543081]
We propose a neural network with post-optimization, which takes an RGB image and sparse depth samples as input and predicts the complete depth map.
Our evaluation results outperform the existing work consistently on both indoor and outdoor datasets.
arXiv Detail & Related papers (2021-12-10T13:01:06Z) - DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion
Network [3.1447111126464997]
We propose DenseLiDAR, a novel real-time pseudo-depth guided depth completion neural network.
We exploit dense pseudo-depth map obtained from simple morphological operations to guide the network.
Our model is able to achieve the state-of-the-art performance at the highest frame rate of 50Hz.
arXiv Detail & Related papers (2021-08-28T14:18:29Z) - Unsupervised Depth Completion with Calibrated Backprojection Layers [79.35651668390496]
We propose a deep neural network architecture to infer dense depth from an image and a sparse point cloud.
It is trained using a video stream and corresponding synchronized sparse point cloud, as obtained from a LIDAR or other range sensor, along with the intrinsic calibration parameters of the camera.
At inference time, the calibration of the camera, which can be different from the one used for training, is fed as an input to the network along with the sparse point cloud and a single image.
arXiv Detail & Related papers (2021-08-24T05:41:59Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Deep Depth Estimation from Visual-Inertial SLAM [11.814395824799988]
We study the case in which the sparse depth is computed from a visual-inertial simultaneous localization and mapping (VI-SLAM) system.
The resulting point cloud has low density, it is noisy, and has non-uniform spatial distribution.
We use the available gravity estimate from the VI-SLAM to warp the input image to the orientation prevailing in the training dataset.
arXiv Detail & Related papers (2020-07-31T21:28:25Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.