Boosting Tail Neural Network for Realtime Custom Keyword Spotting
- URL: http://arxiv.org/abs/2205.12933v2
- Date: Wed, 7 Jun 2023 10:13:20 GMT
- Title: Boosting Tail Neural Network for Realtime Custom Keyword Spotting
- Authors: Sihao Xue, Qianyao Shen, Guoqing Li
- Abstract summary: We propose a Boosting Tail Neural Network (BTNN) for improving the performance of Realtime Custom Keyword Spotting (RCKS)
Inspired by Brain Science that a brain is only partly activated for a nerve simulation, numerous machine learning algorithms are developed to use a batch of weak classifiers to resolve arduous problems.
- Score: 2.5137859989323537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Boosting Tail Neural Network (BTNN) for improving
the performance of Realtime Custom Keyword Spotting (RCKS) that is still an
industrial challenge for demanding powerful classification ability with limited
computation resources. Inspired by Brain Science that a brain is only partly
activated for a nerve simulation and numerous machine learning algorithms are
developed to use a batch of weak classifiers to resolve arduous problems, which
are often proved to be effective. We show that this method is helpful to the
RCKS problem. The proposed approach achieve better performances in terms of
wakeup rate and false alarm.
In our experiments compared with those traditional algorithms that use only
one strong classifier, it gets 18\% relative improvement. We also point out
that this approach may be promising in future ASR exploration.
Related papers
- Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Forward-Forward Algorithm for Hyperspectral Image Classification: A
Preliminary Study [0.0]
Forward-forward algorithm (FFA) computes local goodness functions to optimize network parameters.
This study investigates the application of FFA for hyperspectral image classification.
arXiv Detail & Related papers (2023-07-01T05:39:28Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - A Neural-Network-Based Convex Regularizer for Inverse Problems [14.571246114579468]
Deep-learning methods to solve image-reconstruction problems have enabled a significant increase in reconstruction quality.
These new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings.
In this work, we tackle this issue by revisiting regularizers that are the sum of convex-ridge functions.
The gradient of such regularizers is parameterized by a neural network that has a single hidden layer with increasing and learnable activation functions.
arXiv Detail & Related papers (2022-11-22T18:19:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Benchmarking the Accuracy and Robustness of Feedback Alignment
Algorithms [1.2183405753834562]
Backpropagation is the default algorithm for training deep neural networks due to its simplicity, efficiency and high convergence rate.
In recent years, more biologically plausible learning methods have been proposed.
BioTorch is a software framework to create, train, and benchmark biologically motivated neural networks.
arXiv Detail & Related papers (2021-08-30T18:02:55Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A Deep Neural Network for Audio Classification with a Classifier
Attention Mechanism [2.3204178451683264]
We introduce a new attention-based neural network architecture called Audio-Based Convolutional Neural Network (CAB-CNN)
The algorithm uses a newly designed architecture consisting of a list of simple classifiers and an attention mechanism as a selector.
Compared to the state-of-the-art algorithms, our algorithm achieves more than 10% improvements on all selected test scores.
arXiv Detail & Related papers (2020-06-14T21:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.