Transcormer: Transformer for Sentence Scoring with Sliding Language
Modeling
- URL: http://arxiv.org/abs/2205.12986v1
- Date: Wed, 25 May 2022 18:00:09 GMT
- Title: Transcormer: Transformer for Sentence Scoring with Sliding Language
Modeling
- Authors: Kaitao Song, Yichong Leng, Xu Tan, Yicheng Zou, Tao Qin, Dongsheng Li
- Abstract summary: Sentence scoring aims at measuring the likelihood of a sentence and is widely used in many natural language processing scenarios.
We propose textitTranscormer -- a Transformer model with a novel textitsliding language modeling (SLM) for sentence scoring.
- Score: 95.9542389945259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentence scoring aims at measuring the likelihood score of a sentence and is
widely used in many natural language processing scenarios, like reranking,
which is to select the best sentence from multiple candidates. Previous works
on sentence scoring mainly adopted either causal language modeling (CLM) like
GPT or masked language modeling (MLM) like BERT, which have some limitations:
1) CLM only utilizes unidirectional information for the probability estimation
of a sentence without considering bidirectional context, which affects the
scoring quality; 2) MLM can only estimate the probability of partial tokens at
a time and thus requires multiple forward passes to estimate the probability of
the whole sentence, which incurs large computation and time cost. In this
paper, we propose \textit{Transcormer} -- a Transformer model with a novel
\textit{sliding language modeling} (SLM) for sentence scoring. Specifically,
our SLM adopts a triple-stream self-attention mechanism to estimate the
probability of all tokens in a sentence with bidirectional context and only
requires a single forward pass. SLM can avoid the limitations of CLM (only
unidirectional context) and MLM (multiple forward passes) and inherit their
advantages, and thus achieve high effectiveness and efficiency in scoring.
Experimental results on multiple tasks demonstrate that our method achieves
better performance than other language modelings.
Related papers
- Language Models and Cycle Consistency for Self-Reflective Machine Translation [1.79487674052027]
We generate multiple translation candidates from a source language A to a target language B, and subsequently translate these candidates back to the original language A.
By evaluating the cycle consistency between the original and back-translated sentences using metrics such as token-level precision and accuracy, we implicitly estimate the translation quality in language B.
For each source sentence, we identify the translation candidate with optimal cycle consistency with the original sentence as the final answer.
arXiv Detail & Related papers (2024-11-05T04:01:41Z) - Exploring Continual Fine-Tuning for Enhancing Language Ability in Large Language Model [14.92282077647913]
Continual fine-tuning (CFT) is the process of sequentially fine-tuning an LLM to enable the model to adapt to downstream tasks.
We study a two-phase CFT process in which an English-only end-to-end fine-tuned LLM is sequentially fine-tuned on a multilingual dataset.
We observe that the similarity'' of Phase 2 tasks with Phase 1 determines the LLM's adaptability.
arXiv Detail & Related papers (2024-10-21T13:39:03Z) - Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in
Low-Resource Languages [0.0]
"prompting" is where a user provides a description of a task and some completed examples of the task to a PLM as context before prompting the PLM to perform the task on a new example.
We consider three methods: few-shot prompting (prompt), language-adaptive fine-tuning (LAFT), and neural machine translation (translate)
We find that translate and prompt settings are a compute-efficient and cost-effective method of few-shot prompting for the selected low-resource languages.
arXiv Detail & Related papers (2024-03-09T21:36:13Z) - IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact [46.32830393597601]
Large language models (LLMs) excel in natural language processing but demand intensive computation.
This paper unveils a previously overlooked type of outliers in LLMs.
We propose IntactKV to generate the KV cache of pivot tokens losslessly from the full-precision model.
arXiv Detail & Related papers (2024-03-02T16:05:26Z) - Which Syntactic Capabilities Are Statistically Learned by Masked
Language Models for Code? [51.29970742152668]
We highlight relying on accuracy-based measurements may lead to an overestimation of models' capabilities.
To address these issues, we introduce a technique called SyntaxEval in Syntactic Capabilities.
arXiv Detail & Related papers (2024-01-03T02:44:02Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - Modeling Sequential Sentence Relation to Improve Cross-lingual Dense
Retrieval [87.11836738011007]
We propose a multilingual multilingual language model called masked sentence model (MSM)
MSM consists of a sentence encoder to generate the sentence representations, and a document encoder applied to a sequence of sentence vectors from a document.
To train the model, we propose a masked sentence prediction task, which masks and predicts the sentence vector via a hierarchical contrastive loss with sampled negatives.
arXiv Detail & Related papers (2023-02-03T09:54:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.