Forking Paths in Neural Text Generation
- URL: http://arxiv.org/abs/2412.07961v1
- Date: Tue, 10 Dec 2024 22:57:57 GMT
- Title: Forking Paths in Neural Text Generation
- Authors: Eric Bigelow, Ari Holtzman, Hidenori Tanaka, Tomer Ullman,
- Abstract summary: We develop a novel approach to representing uncertainty dynamics across individual tokens of text generation.
We use our method to analyze LLM responses on 7 different tasks across 4 domains.
We find many examples of forking tokens, including surprising ones such as punctuation marks.
- Score: 14.75166317633176
- License:
- Abstract: Estimating uncertainty in Large Language Models (LLMs) is important for properly evaluating LLMs, and ensuring safety for users. However, prior approaches to uncertainty estimation focus on the final answer in generated text, ignoring intermediate steps that might dramatically impact the outcome. We hypothesize that there exist key forking tokens, such that re-sampling the system at those specific tokens, but not others, leads to very different outcomes. To test this empirically, we develop a novel approach to representing uncertainty dynamics across individual tokens of text generation, and applying statistical models to test our hypothesis. Our approach is highly flexible: it can be applied to any dataset and any LLM, without fine tuning or accessing model weights. We use our method to analyze LLM responses on 7 different tasks across 4 domains, spanning a wide range of typical use cases. We find many examples of forking tokens, including surprising ones such as punctuation marks, suggesting that LLMs are often just a single token away from saying something very different.
Related papers
- Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
Next-token distribution outputs offer a theoretically appealing approach for detection of large language models (LLMs)
We propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length.
PAWN shows competitive and even better performance in-distribution than the strongest baselines with a fraction of their trainable parameters.
arXiv Detail & Related papers (2025-01-07T17:00:49Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
We introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection.
We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text.
arXiv Detail & Related papers (2024-09-23T07:55:35Z) - Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs [0.41436032949434404]
We develop and rigorously evaluate new detection methods for issue framing and narrative analysis within large text datasets.
We show that issue framing can be reliably and efficiently detected in large corpora with only a few examples of either perspective on a given issue.
arXiv Detail & Related papers (2024-08-19T07:14:15Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling [3.873482175367558]
In this paper, we treat the Generation of each token by Large Language Model (LLM) as a Classification (GaC) for ensembling.
In experiments, we ensemble state-of-the-art LLMs on several benchmarks, including exams, mathematics and reasoning, and observe that our method breaks the existing community performance ceiling.
arXiv Detail & Related papers (2024-06-18T13:17:26Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Transcormer: Transformer for Sentence Scoring with Sliding Language
Modeling [95.9542389945259]
Sentence scoring aims at measuring the likelihood of a sentence and is widely used in many natural language processing scenarios.
We propose textitTranscormer -- a Transformer model with a novel textitsliding language modeling (SLM) for sentence scoring.
arXiv Detail & Related papers (2022-05-25T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.