Exploring Continual Fine-Tuning for Enhancing Language Ability in Large Language Model
- URL: http://arxiv.org/abs/2410.16006v1
- Date: Mon, 21 Oct 2024 13:39:03 GMT
- Title: Exploring Continual Fine-Tuning for Enhancing Language Ability in Large Language Model
- Authors: Divyanshu Aggarwal, Sankarshan Damle, Navin Goyal, Satya Lokam, Sunayana Sitaram,
- Abstract summary: Continual fine-tuning (CFT) is the process of sequentially fine-tuning an LLM to enable the model to adapt to downstream tasks.
We study a two-phase CFT process in which an English-only end-to-end fine-tuned LLM is sequentially fine-tuned on a multilingual dataset.
We observe that the similarity'' of Phase 2 tasks with Phase 1 determines the LLM's adaptability.
- Score: 14.92282077647913
- License:
- Abstract: A common challenge towards the adaptability of Large Language Models (LLMs) is their ability to learn new languages over time without hampering the model's performance on languages in which the model is already proficient (usually English). Continual fine-tuning (CFT) is the process of sequentially fine-tuning an LLM to enable the model to adapt to downstream tasks with varying data distributions and time shifts. This paper focuses on the language adaptability of LLMs through CFT. We study a two-phase CFT process in which an English-only end-to-end fine-tuned LLM from Phase 1 (predominantly Task Ability) is sequentially fine-tuned on a multilingual dataset -- comprising task data in new languages -- in Phase 2 (predominantly Language Ability). We observe that the ``similarity'' of Phase 2 tasks with Phase 1 determines the LLM's adaptability. For similar phase-wise datasets, the LLM after Phase 2 does not show deterioration in task ability. In contrast, when the phase-wise datasets are not similar, the LLM's task ability deteriorates. We test our hypothesis on the open-source \mis\ and \llm\ models with multiple phase-wise dataset pairs. To address the deterioration, we analyze tailored variants of two CFT methods: layer freezing and generative replay. Our findings demonstrate their effectiveness in enhancing the language ability of LLMs while preserving task performance, in comparison to relevant baselines.
Related papers
- Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
We explore what it would take to adapt Large Language Models for low-resource languages.
We show that parallel data is critical during both pre-training andSupervised Fine-Tuning (SFT)
Our experiments with three LLMs across two low-resourced language groups reveal consistent trends, underscoring the generalizability of our findings.
arXiv Detail & Related papers (2024-08-23T00:59:38Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
arXiv Detail & Related papers (2024-08-06T10:46:46Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - Exploring Design Choices for Building Language-Specific LLMs [36.32622880071991]
We study building language-specific language models by adapting monolingual and multilingual models.
We find that the initial performance of LLM does not always correlate with the final performance after the adaptation.
arXiv Detail & Related papers (2024-06-20T18:47:43Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.