論文の概要: TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for
Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2205.13012v1
- Date: Wed, 25 May 2022 18:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 13:20:59.436647
- Title: TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for
Multivariate Time Series
- Title(参考訳): TSEM:多変量時系列のための時間重み付き時空間説明可能なニューラルネットワーク
- Authors: Anh-Duy Pham, Anastassia Kuestenmacher, Paul G. Ploeger
- Abstract要約: 時系列深層学習におけるモデルに依存しない,モデル固有のアプローチを提案する。
TSEMは,多くの解釈可能性基準を満たすとともに,XCMよりも精度が高いことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has become a one-size-fits-all solution for technical and
business domains thanks to its flexibility and adaptability. It is implemented
using opaque models, which unfortunately undermines the outcome
trustworthiness. In order to have a better understanding of the behavior of a
system, particularly one driven by time series, a look inside a deep learning
model so-called posthoc eXplainable Artificial Intelligence (XAI) approaches,
is important. There are two major types of XAI for time series data, namely
model-agnostic and model-specific. Model-specific approach is considered in
this work. While other approaches employ either Class Activation Mapping (CAM)
or Attention Mechanism, we merge the two strategies into a single system,
simply called the Temporally Weighted Spatiotemporal Explainable Neural Network
for Multivariate Time Series (TSEM). TSEM combines the capabilities of RNN and
CNN models in such a way that RNN hidden units are employed as attention
weights for the CNN feature maps temporal axis. The result shows that TSEM
outperforms XCM. It is similar to STAM in terms of accuracy, while also
satisfying a number of interpretability criteria, including causality,
fidelity, and spatiotemporality.
- Abstract(参考訳): ディープラーニングはその柔軟性と適応性のおかげで、技術領域とビジネス領域のすべてに適合する1サイズソリューションになっています。
不透明なモデルを使って実装され、残念ながら結果の信頼性を損なう。
システムの振る舞いをより深く理解するためには、特に時系列によって駆動されるもので、ポストホックeXplainable Artificial Intelligence(XAI)アプローチと呼ばれるディープラーニングモデルの内部を見ることが重要である。
時系列データのxaiには、モデル非依存とモデル固有という2つの主要なタイプがある。
この研究ではモデル固有のアプローチが検討されている。
他のアプローチでは、クラスアクティベーションマッピング(cam)またはアテンションメカニズムを採用しているが、この2つの戦略を単に時間重み付き時空間説明可能ニューラルネットワーク(tsem)と呼ばれる単一のシステムに統合する。
TSEMは、CNN特徴写像の時間軸に対する注意重みとしてRNN隠蔽ユニットが使用されるように、RNNモデルとCNNモデルの能力を組み合わせる。
その結果,TSEMはXCMより優れていた。
精度はSTAMに似ているが、因果性、忠実性、時空間性など、多くの解釈可能性基準を満たす。
関連論文リスト
- FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
本稿では,構築によって解釈可能な時系列予測のための新しいモジュール型ニューラルネットワークモデルを提案する。
リカレントニューラルネットワークはデータ内の時間的依存関係を学習し、アテンションベースの特徴選択コンポーネントは最も関連性の高い特徴を選択する。
モジュール型のディープネットワークは、選択した機能から独立してトレーニングされ、ユーザーが機能がどのように結果に影響を与えるかを示し、モデルを解釈できる。
論文 参考訳(メタデータ) (2023-11-28T14:51:06Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
論文 参考訳(メタデータ) (2023-06-06T16:24:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
本稿は,現代のニューラルODEを,時系列モデリングアプリケーションのためのより単純なモデルに還元することはできないことを示す。
ニューラルODEの複雑さは、従来の時系列モデリングツールと比較されるか、超える。
本稿では,ニューラルネットワークとODEシステムを用いた時系列モデリングの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-06-07T13:49:40Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。