論文の概要: MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs
- arxiv url: http://arxiv.org/abs/2306.03834v1
- Date: Tue, 6 Jun 2023 16:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 14:25:46.032815
- Title: MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs
- Title(参考訳): mts2graph:時間発展グラフを用いた多変量時系列分類
- Authors: Raneen Younis, Abdul Hakmeh, and Zahra Ahmadi
- Abstract要約: 入力代表パターンを抽出・クラスタリングすることで時系列データを解釈する新しいフレームワークを提案する。
UCR/UEAアーカイブの8つのデータセットとHARとPAMデータセットで実験を行います。
- 参考スコア(独自算出の注目度): 1.1756822700775666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional time series classification approaches based on bags of patterns
or shapelets face significant challenges in dealing with a vast amount of
feature candidates from high-dimensional multivariate data. In contrast, deep
neural networks can learn low-dimensional features efficiently, and in
particular, Convolutional Neural Networks (CNN) have shown promising results in
classifying Multivariate Time Series (MTS) data. A key factor in the success of
deep neural networks is this astonishing expressive power. However, this power
comes at the cost of complex, black-boxed models, conflicting with the goals of
building reliable and human-understandable models. An essential criterion in
understanding such predictive deep models involves quantifying the contribution
of time-varying input variables to the classification. Hence, in this work, we
introduce a new framework for interpreting multivariate time series data by
extracting and clustering the input representative patterns that highly
activate CNN neurons. This way, we identify each signal's role and
dependencies, considering all possible combinations of signals in the MTS
input. Then, we construct a graph that captures the temporal relationship
between the extracted patterns for each layer. An effective graph merging
strategy finds the connection of each node to the previous layer's nodes.
Finally, a graph embedding algorithm generates new representations of the
created interpretable time-series features. To evaluate the performance of our
proposed framework, we run extensive experiments on eight datasets of the
UCR/UEA archive, along with HAR and PAM datasets. The experiments indicate the
benefit of our time-aware graph-based representation in MTS classification
while enriching them with more interpretability.
- Abstract(参考訳): パターンやシェープレットの袋に基づく従来の時系列分類アプローチは、高次元多変量データから大量の特徴候補を扱う上で大きな課題に直面している。
対照的に、深層ニューラルネットワークは低次元の特徴を効率的に学習することができ、特に畳み込みニューラルネットワーク(cnn)は多変量時系列(mts)データの分類において有望な結果を示している。
ディープニューラルネットワークの成功の重要な要因は、この驚くべき表現力である。
しかし、このパワーは複雑なブラックボックスモデルのコストを伴い、信頼性と人間に理解可能なモデルを構築するという目標と矛盾する。
このような予測的深層モデルを理解する上で不可欠な基準は、時変入力変数の分類への寄与を定量化することである。
そこで本研究では,cnnニューロンを活性化する入力代表パターンを抽出・クラスタリングすることにより,多変量時系列データを解釈するための新しいフレームワークを提案する。
これにより、mts入力における信号の全ての組み合わせを考慮して、各信号の役割と依存性を識別する。
次に,各層から抽出されたパターン間の時間的関係を捉えるグラフを構築する。
効果的なグラフマージ戦略は、各ノードと前のレイヤのノードの接続を見つける。
最後に、グラフ埋め込みアルゴリズムは、生成された解釈可能な時系列特徴の新しい表現を生成する。
提案フレームワークの性能を評価するため,UCR/UEAアーカイブの8つのデータセットに対して,HARおよびPAMデータセットとともに広範な実験を行った。
実験により, MTS分類における時間認識グラフに基づく表現の利点が示された。
関連論文リスト
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
既存のディープラーニングに基づくMTSC技術は、主に単一時系列の時間依存性に関係している。
MTSの表現的グローバル表現を得るために,グラフプーリングに基づく新しいフレームワークMTPoolを提案する。
10のベンチマークデータセットの実験では、MTSCタスクでMTPoolが最先端の戦略を上回っている。
論文 参考訳(メタデータ) (2020-10-12T12:36:47Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。