Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification
- URL: http://arxiv.org/abs/2205.13033v1
- Date: Wed, 25 May 2022 20:03:09 GMT
- Title: Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification
- Authors: Anish Thite, Mohan Dodda, Pulak Agarwal, Jason Zutty
- Abstract summary: Current state-of-the-art (SOTA) methods do not include traditional methods for manipulating input data as part of the algorithmic search space.
We adapt the Evolutionary Multi-objective Algorithm Design Engine (EMADE), a multi-objective evolutionary search framework for traditional machine learning methods, to perform neural architecture search.
We show that including these methods as part of the search space shows potential to provide benefits to performance on the CIFAR-10 image classification benchmark dataset.
- Score: 0.5735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNN's) are a widely-used solution for a variety of
machine learning problems. However, it is often necessary to invest a
significant amount of a data scientist's time to pre-process input data, test
different neural network architectures, and tune hyper-parameters for optimal
performance. Automated machine learning (autoML) methods automatically search
the architecture and hyper-parameter space for optimal neural networks.
However, current state-of-the-art (SOTA) methods do not include traditional
methods for manipulating input data as part of the algorithmic search space. We
adapt the Evolutionary Multi-objective Algorithm Design Engine (EMADE), a
multi-objective evolutionary search framework for traditional machine learning
methods, to perform neural architecture search. We also integrate EMADE's
signal processing and image processing primitives. These primitives allow EMADE
to manipulate input data before ingestion into the simultaneously evolved DNN.
We show that including these methods as part of the search space shows
potential to provide benefits to performance on the CIFAR-10 image
classification benchmark dataset.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Differentiable Visual Computing for Inverse Problems and Machine
Learning [27.45555082573493]
Visual computing methods are used to analyze geometry, physically simulate solids, fluids, and other media, and render the world via optical techniques.
Deep learning (DL) allows for the construction of general algorithmic models, side stepping the need for a purely first principles-based approach to problem solving.
DL is powered by highly parameterized neural network architectures -- universal function approximators -- and gradient-based search algorithms.
arXiv Detail & Related papers (2023-11-21T23:02:58Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - VINNAS: Variational Inference-based Neural Network Architecture Search [2.685668802278155]
We present a differentiable variational inference-based NAS method for searching sparse convolutional neural networks.
Our method finds diverse network cells, while showing state-of-the-art accuracy with up to almost 2 times fewer non-zero parameters.
arXiv Detail & Related papers (2020-07-12T21:47:35Z) - Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method [1.027974860479791]
We address challenges of the preprocessing phase, by an automated selection of representative frames among the input sequences.
We propose a hybrid technique using background subtraction and HOG, followed by application of a deep neural network and skeletal modelling method.
We name our model as Feature Reduction & Deep Learning based action recognition method, or FR-DL in short.
arXiv Detail & Related papers (2020-07-06T15:12:50Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.