Quantum cryptography integrating an optical quantum memory
- URL: http://arxiv.org/abs/2504.00094v1
- Date: Mon, 31 Mar 2025 18:00:04 GMT
- Title: Quantum cryptography integrating an optical quantum memory
- Authors: H. Mamann, T. Nieddu, F. Hoffet, M. Bozzio, F. Garreau de Loubresse, I. Kerenidis, E. Diamanti, A. Urvoy, J. Laurat,
- Abstract summary: Developments in scalable quantum networks rely critically on optical quantum memories.<n>We present the first demonstration of a cryptography protocol incorporating an intermediate quantum memory layer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developments in scalable quantum networks rely critically on optical quantum memories, which are key components enabling the storage of quantum information. These memories play a pivotal role for entanglement distribution and long-distance quantum communication, with remarkable advances achieved in this context. However, optical memories have broader applications, and their storage and buffering capabilities can benefit a wide range of future quantum technologies. Here we present the first demonstration of a cryptography protocol incorporating an intermediate quantum memory layer. Specifically, we implement Wiesner's unforgeable quantum money primitive with a storage step, rather than as an on-the-fly procedure. This protocol imposes stringent requirements on storage efficiency and noise level to reach a secure regime. We demonstrate the implementation with polarization encoding of weak coherent states of light and a high-efficiency cold-atom-based quantum memory, and validate the full scheme. Our results showcase a major capability, opening new avenues for quantum memory utilization and network functionalities.
Related papers
- Light Storage in Light Cages: A Scalable Platform for Multiplexed Quantum Memories [0.8539703554674337]
We demonstrate the storage of attenuated coherent light pulses in a cesium (Cs) quantum memory based on a 3D-printed hollow-core waveguide.
We successfully integrated multiple LC memories onto a single chip within a Cs vapor cell, achieving consistent performance across all devices.
These results represent a significant advancement toward spatially multiplexed quantum memories and have the potential to elevate memory integration to unprecedented levels.
arXiv Detail & Related papers (2025-03-28T13:35:12Z) - On-demand storing time-bin qubit states with optical quantum memory [18.133750994113193]
We experimentally demonstrate a low-cost optical quantum memory with high efficiency and high fidelity.<n>The storage efficiency per round can reach up to 95.0%, and the overall state fidelity can exceed 99.1%.
arXiv Detail & Related papers (2025-02-19T07:27:26Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Realization of a programmable multi-purpose photonic quantum memory with over-thousand qubit manipulations [4.933311664140376]
Quantum networks can enable various applications such as distributed quantum computing, long-distance quantum communication, and network-based quantum sensing with unprecedented performances.
One of the most important building blocks for a quantum network is a photonic quantum memory which serves as the interface between the communication channel and the local functional unit.
Here we report a high-performance quantum memory which can simultaneously store 72 optical qubits carried by 144 spatially separated atomic ensembles.
arXiv Detail & Related papers (2023-11-17T02:45:44Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - High-performance cavity-enhanced quantum memory with warm atomic cell [1.0539847330971805]
We report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell.
It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities.
arXiv Detail & Related papers (2022-06-17T01:59:26Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.