Progress towards efficient 4-level photon echo memories
- URL: http://arxiv.org/abs/2409.12503v1
- Date: Thu, 19 Sep 2024 06:49:24 GMT
- Title: Progress towards efficient 4-level photon echo memories
- Authors: James Stuart, Kieran Smith, Morgan Hedges, Rose Ahlefeldt, Matthew Sellars,
- Abstract summary: We show an efficient (up to 80%) spin-storage quantum memory in Er:YSO.
We demonstrate the storage of 70 temporal modes, with a write time of 150 us, and a storage time of 25 us.
Such a device would have applications in quantum networking and measurement-based quantum computing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum memories could benefit many devices in quantum information processing. For a quantum to be useful in real-world applications, the quantum memory must have a high recall efficiency. Here we demonstrate an efficient (up to 80%) spin-storage quantum memory in Er:YSO, using the 4-level rephased amplified spontaneous emission protocol. We show non-classical correlations between the ASE and RASE fields produced by the quantum memory. Also, we demonstrate the storage of 70 temporal modes, with a write time of 150 us, and a storage time of 25 us. Finally, a clear pathway is presented to improve the efficiency, storage time, and mode capacity. Such a device would have applications in quantum networking and measurement-based quantum computing.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Large-scale full-programmable quantum walk and its applications [18.832850380803333]
Quantum walks are powerful kernels for developing new and useful quantum algorithms.
Here we realize large-scale quantum walks using a fully programmable photonic quantum computing system.
In the 400-dimensional Hilbert space, the average fidelity of random entangled quantum states after the whole on-chip circuit evolution reaches as high as 94.29$pm$1.28$%$.
arXiv Detail & Related papers (2022-08-28T09:36:32Z) - High-performance cavity-enhanced quantum memory with warm atomic cell [1.0539847330971805]
We report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell.
It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities.
arXiv Detail & Related papers (2022-06-17T01:59:26Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Long-lived storage of orbital angular momentum quantum states [3.7745382500674296]
We implement a quantum memory for OAM qubits and qutrits using a cold atomic ensemble.
Our work is very promising for establishing a high dimensional quantum network.
arXiv Detail & Related papers (2022-03-21T11:10:10Z) - On-Demand Storage and Retrieval of Microwave Photons Using a
Superconducting Multiresonator Quantum Memory [8.02214511485348]
A quantum memory that can store quantum states faithfully and retrieve them on demand has wide applications in quantum information science.
We implement a superconducting multi-resonator quantum memory composed of a set of frequency-tunable coplanar transmission line (CPW) resonators.
We demonstrate on-demand storage and retrieval of a time-bin flying qubit.
arXiv Detail & Related papers (2021-11-10T09:38:09Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Efficient quantum memory for single photon polarization qubits [0.21670084965090575]
A quantum memory is a key interface for realizing long-distance quantum communication and large-scale quantum computation.
Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99 %.
For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6 %.
arXiv Detail & Related papers (2020-04-07T04:39:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.