Deeper Insights into Learning Performance of Stochastic Configuration Networks
- URL: http://arxiv.org/abs/2411.08544v1
- Date: Wed, 13 Nov 2024 11:45:39 GMT
- Title: Deeper Insights into Learning Performance of Stochastic Configuration Networks
- Authors: Xiufeng Yan, Dianhui Wang,
- Abstract summary: Configuration Networks (SCNs) are a class of randomized neural networks that integrate randomized algorithms within an incremental learning framework.
We present a comprehensive analysis of the impact of the supervisory mechanism on the learning performance of SCNs.
We propose a novel method for evaluating the hidden layer's output matrix, supported by a new supervisory mechanism.
- Score: 3.8719670789415925
- License:
- Abstract: Stochastic Configuration Networks (SCNs) are a class of randomized neural networks that integrate randomized algorithms within an incremental learning framework. A defining feature of SCNs is the supervisory mechanism, which adaptively adjusts the distribution to generate effective random basis functions, thereby enabling error-free learning. In this paper, we present a comprehensive analysis of the impact of the supervisory mechanism on the learning performance of SCNs. Our findings reveal that the current SCN framework evaluates the effectiveness of each random basis function in reducing residual errors using a lower bound on its error reduction potential, which constrains SCNs' overall learning efficiency. Specifically, SCNs may fail to consistently select the most effective random candidate as the new basis function during each training iteration. To overcome this problem, we propose a novel method for evaluating the hidden layer's output matrix, supported by a new supervisory mechanism that accurately assesses the error reduction potential of random basis functions without requiring the computation of the Moore-Penrose inverse of the output matrix. This approach enhances the selection of basis functions, reducing computational complexity and improving the overall scalability and learning capabilities of SCNs. We introduce a Recursive Moore-Penrose Inverse-SCN (RMPI-SCN) training scheme based on the new supervisory mechanism and demonstrate its effectiveness through simulations over some benchmark datasets. Experiments show that RMPI-SCN outperforms the conventional SCN in terms of learning capability, underscoring its potential to advance the SCN framework for large-scale data modeling applications.
Related papers
- Recurrent Stochastic Configuration Networks with Incremental Blocks [0.0]
Recurrent configuration networks (RSCNs) have shown promise in modelling nonlinear dynamic systems with order uncertainty.
This paper develops the original RSCNs with block increments, termed block RSCNs (BRSCNs)
BRSCNs can simultaneously add multiple reservoir nodes (subreservoirs) during the construction.
arXiv Detail & Related papers (2024-11-18T05:58:47Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Composite FORCE learning of chaotic echo state networks for time-series
prediction [7.650966670809372]
This paper proposes a composite FORCE learning method to train ESNs whose initial activity is spontaneously chaotic.
numerical results have shown that it significantly improves learning and prediction performances compared with existing methods.
arXiv Detail & Related papers (2022-07-06T03:44:09Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
We propose a neural network called SymNMF-Net for the Symmetric NMF problem.
We show that the inference of each block corresponds to a single iteration of the optimization.
Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net.
arXiv Detail & Related papers (2022-05-26T08:17:39Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Interpretable Design of Reservoir Computing Networks using Realization
Theory [5.607676459156789]
Reservoir computing networks (RCNs) have been successfully employed as a tool in learning and complex decision-making tasks.
We develop an algorithm to design RCNs using the realization theory of linear dynamical systems.
arXiv Detail & Related papers (2021-12-13T18:49:29Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
We propose a learning-based framework, which unrolls decentralized optimization algorithms into graph neural networks (GNNs)
By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue.
Our convergence analysis reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent.
arXiv Detail & Related papers (2021-04-04T07:52:34Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.