Quantum correlations and speed limit of central spin system
- URL: http://arxiv.org/abs/2205.13195v2
- Date: Tue, 17 Jan 2023 11:33:37 GMT
- Title: Quantum correlations and speed limit of central spin system
- Authors: Devvrat Tiwari and K. G. Paulson and Subhashish Banerjee
- Abstract summary: We consider single, and two-qubit central spin systems interacting with spin baths and discuss their dynamical properties.
The impact of the size of the spin bath on the quantum speed limit for a single qubit central spin model is analyzed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we consider single, and two-qubit central spin systems
interacting with spin baths and discuss their dynamical properties. We consider
the cases of interacting and non-interacting spin baths and investigate the
quantum speed limit (QSL) time of evolution. The impact of the size of the spin
bath on the quantum speed limit for a single qubit central spin model is
analyzed. We estimate the quantum correlations for (non-)interacting two
central spin qubits and compare their dynamical behaviour with that of QSL time
under various conditions. We show how QSL time could be availed to analyze the
dynamics of quantum correlations.
Related papers
- Realization of strongly-interacting Meissner phases in large bosonic flux ladders [36.136619420474766]
We experimentally realize the strongly-interacting Mott-Meissner phase in large-scale bosonic flux ladders with 48 sites at half filling.
Our results demonstrate the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases.
arXiv Detail & Related papers (2024-12-12T17:27:49Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Quantum speed limit and nonclassicality in open quantum system models using the Wigner function [0.0]
We study the quantum speed limit and the Wigner function of open system models.
The dependence of the coupling on the position of the qubits allows for the study of the dynamics in the collective regime.
The presence of quantum correlations is seen to speed up the evolution.
arXiv Detail & Related papers (2024-06-03T19:03:26Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Experimental Investigation of Geometric Quantum Speed Limits in an Open Quantum System [0.0]
We studied geometric quantum speed limits (QSL) of a qubit subject to decoherence in an ensemble of chloroform molecules.
We used two distinguishability measures of quantum states to assess the speed of the qubit evolution.
arXiv Detail & Related papers (2023-07-13T04:55:00Z) - Entanglement Generation and Decoherence in a Two-Qubit System Mediated
by Relativistic Quantum Field [0.0]
We study a toy model of a quantum entanglement generation between two spins (qubits) mediated by a relativistic free scalar field.
Because of the associated particle creation into an open system, the quantum state of spins is partially decohered.
We calculate various quantities such as spin correlations, entanglement entropies, mutual information and negativity, and study their behaviors in various limiting situations.
arXiv Detail & Related papers (2022-11-17T10:05:02Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Synthesizing five-body interaction in a superconducting quantum circuit [12.594562121892576]
We synthesize five-body spin-exchange interaction in a superconducting quantum circuit.
A Greenberger-Horne-Zeilinger state is generated in a single step with fidelity estimated to be $0.685$.
This study paves a way for quantum simulation involving many-body interactions and high excited states of quantum circuits.
arXiv Detail & Related papers (2021-09-01T11:29:12Z) - Quantum Fisher information and skew information correlations in dipolar
spin system [1.5630592429258865]
Quantum Fisher information (QFI) and skew information (SI) plays a key role in the quantum resource theory.
We consider a pair ofspin-1/2 particles coupled with dipolar and Dzyaloshinsky-Moriya (DM) interactions, serving as the physical carrier of quantum information.
arXiv Detail & Related papers (2020-11-11T16:18:11Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.