Classification ensembles for multivariate functional data with
application to mouse movements in web surveys
- URL: http://arxiv.org/abs/2205.13380v1
- Date: Thu, 26 May 2022 14:12:24 GMT
- Title: Classification ensembles for multivariate functional data with
application to mouse movements in web surveys
- Authors: Amanda Fern\'andez-Fontelo and Felix Henninger and Pascal J. Kieslich
and Frauke Kreuter and Sonja Greven
- Abstract summary: We propose new ensemble models for multivariate functional data classification as combinations of weak learners.
We apply these ensemble models to identify respondents' difficulty with survey questions, with the aim to improve survey data quality.
- Score: 3.6944296923226316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose new ensemble models for multivariate functional data
classification as combinations of semi-metric-based weak learners. Our models
extend current semi-metric-type methods from the univariate to the multivariate
case, propose new semi-metrics to compute distances between functions, and
consider more flexible options for combining weak learners using stacked
generalisation methods. We apply these ensemble models to identify respondents'
difficulty with survey questions, with the aim to improve survey data quality.
As predictors of difficulty, we use mouse movement trajectories from the
respondents' interaction with a web survey, in which several questions were
manipulated to create two scenarios with different levels of difficulty.
Related papers
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multi-Task Learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives [10.514866749547558]
We consider a problem in Multi-Task Learning (MTL) where multiple linear models are jointly trained on a collection of datasets.
A key novelty of our framework is that it allows the sparsity pattern of regression coefficients and the values of non-zero coefficients to differ across tasks.
Our methods encourage models to share information across tasks through separately encouraging 1) coefficient supports, and/or 2) nonzero coefficient values to be similar.
This allows models to borrow strength during variable selection even when non-zero coefficient values differ across tasks.
arXiv Detail & Related papers (2022-12-16T19:52:25Z) - MetaQA: Combining Expert Agents for Multi-Skill Question Answering [49.35261724460689]
We argue that despite the promising results of multi-dataset models, some domains or QA formats might require specific architectures.
We propose to combine expert agents with a novel, flexible, and training-efficient architecture that considers questions, answer predictions, and answer-prediction confidence scores.
arXiv Detail & Related papers (2021-12-03T14:05:52Z) - Learning with Instance Bundles for Reading Comprehension [61.823444215188296]
We introduce new supervision techniques that compare question-answer scores across multiple related instances.
Specifically, we normalize these scores across various neighborhoods of closely contrasting questions and/or answers.
We empirically demonstrate the effectiveness of training with instance bundles on two datasets.
arXiv Detail & Related papers (2021-04-18T06:17:54Z) - Multi-scale Adaptive Task Attention Network for Few-Shot Learning [5.861206243996454]
The goal of few-shot learning is to classify unseen categories with few labeled samples.
This paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning.
arXiv Detail & Related papers (2020-11-30T00:36:01Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
We propose Stable Minipatch Selection (STAMPS) and Adaptive STAMPS.
STAMPS are meta-algorithms that build ensembles of selection events of base feature selectors trained on tiny, (ly-adaptive) random subsets of both the observations and features of the data.
Our approaches are general and can be employed with a variety of existing feature selection strategies and machine learning techniques.
arXiv Detail & Related papers (2020-10-16T17:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.