Multi-Task Learning with Summary Statistics
- URL: http://arxiv.org/abs/2307.02388v2
- Date: Thu, 8 Feb 2024 18:08:29 GMT
- Title: Multi-Task Learning with Summary Statistics
- Authors: Parker Knight, Rui Duan
- Abstract summary: We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
- Score: 4.871473117968554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning has emerged as a powerful machine learning paradigm for
integrating data from multiple sources, leveraging similarities between tasks
to improve overall model performance. However, the application of multi-task
learning to real-world settings is hindered by data-sharing constraints,
especially in healthcare settings. To address this challenge, we propose a
flexible multi-task learning framework utilizing summary statistics from
various sources. Additionally, we present an adaptive parameter selection
approach based on a variant of Lepski's method, allowing for data-driven tuning
parameter selection when only summary statistics are available. Our systematic
non-asymptotic analysis characterizes the performance of the proposed methods
under various regimes of the sample complexity and overlap. We demonstrate our
theoretical findings and the performance of the method through extensive
simulations. This work offers a more flexible tool for training related models
across various domains, with practical implications in genetic risk prediction
and many other fields.
Related papers
- Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information.
We derive a closed-form solution for multi-task optimization in the context of linear models.
arXiv Detail & Related papers (2024-06-14T17:59:25Z) - Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study [17.555311732095483]
The FMTL approach consolidates the benefits of Federated Learning (FL) and Multi-Task Learning (MTL)
This paper introduces a novel framework, FMTL-Bench, for systematic evaluation of the FMTL paradigm.
arXiv Detail & Related papers (2024-02-20T10:13:44Z) - Order Matters in the Presence of Dataset Imbalance for Multilingual
Learning [53.74649778447903]
We present a simple yet effective method of pre-training on high-resource tasks, followed by fine-tuning on a mixture of high/low-resource tasks.
We show its improvements in neural machine translation (NMT) and multi-lingual language modeling.
arXiv Detail & Related papers (2023-12-11T05:46:57Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Multi-model Ensemble Learning Method for Human Expression Recognition [31.76775306959038]
We propose our solution based on the ensemble learning method to capture large amounts of real-life data.
We conduct many experiments on the AffWild2 dataset of the ABAW2022 Challenge, and the results demonstrate the effectiveness of our solution.
arXiv Detail & Related papers (2022-03-28T03:15:06Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Adaptive and Robust Multi-Task Learning [8.883733362171036]
We study the multi-task learning problem that aims to simultaneously analyze multiple datasets collected from different sources.
We propose a family of adaptive methods that automatically utilize possible similarities among those tasks.
We derive sharp statistical guarantees for the methods and prove their robustness against outlier tasks.
arXiv Detail & Related papers (2022-02-10T18:55:58Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics [4.237343083490243]
In machine learning (ML), ensemble methods such as bagging, boosting, and stacking are widely-established approaches.
StackGenVis is a visual analytics system for stacked generalization.
arXiv Detail & Related papers (2020-05-04T15:43:55Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.