論文の概要: Low-rank lottery tickets: finding efficient low-rank neural networks via
matrix differential equations
- arxiv url: http://arxiv.org/abs/2205.13571v1
- Date: Thu, 26 May 2022 18:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 12:58:19.207988
- Title: Low-rank lottery tickets: finding efficient low-rank neural networks via
matrix differential equations
- Title(参考訳): 低ランク宝くじ:行列微分方程式による効率的な低ランクニューラルネットワークの探索
- Authors: Steffen Schotth\"ofer, Emanuele Zangrando, Jonas Kusch, Gianluca
Ceruti, Francesco Tudisco
- Abstract要約: 効率的なローランクワークを見つけるための新しいアルゴリズムを提案する。
これらの作業は、トレーニングフェーズですでに決定され、適応されています。
本手法は,所望の近似精度を達成するために,訓練中のランクを自動的に動的に適応させる。
- 参考スコア(独自算出の注目度): 2.3488056916440856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have achieved tremendous success in a large variety of
applications. However, their memory footprint and computational demand can
render them impractical in application settings with limited hardware or energy
resources. In this work, we propose a novel algorithm to find efficient
low-rank subnetworks. Remarkably, these subnetworks are determined and adapted
already during the training phase and the overall time and memory resources
required by both training and evaluating them is significantly reduced. The
main idea is to restrict the weight matrices to a low-rank manifold and to
update the low-rank factors rather than the full matrix during training. To
derive training updates that are restricted to the prescribed manifold, we
employ techniques from dynamic model order reduction for matrix differential
equations. Moreover, our method automatically and dynamically adapts the ranks
during training to achieve a desired approximation accuracy. The efficiency of
the proposed method is demonstrated through a variety of numerical experiments
on fully-connected and convolutional networks.
- Abstract(参考訳): ニューラルネットワークは様々なアプリケーションで大きな成功を収めています。
しかし、メモリフットプリントと計算要求は、ハードウェアやエネルギー資源に制限のあるアプリケーション環境では実用的ではない。
本研究では,効率的な低ランクサブネットワークを見つけるための新しいアルゴリズムを提案する。
驚くべきことに、これらのサブネットワークは、すでにトレーニングフェーズ中に決定され、適応され、トレーニングと評価の両方で必要とされる全体的な時間とメモリリソースが大幅に削減される。
主なアイデアは、重み行列をローランク多様体に制限し、トレーニング中にフルマトリクスではなくローランク因子を更新することである。
所定の多様体に制限されたトレーニング更新を導出するために,行列微分方程式の動的モデル次数減少法を用いる。
さらに,学習中のランクを自動的に動的に適応させ,所望の近似精度を得る。
提案手法の効率は,完全連結および畳み込みネットワーク上での各種数値実験により実証された。
関連論文リスト
- AdaRankGrad: Adaptive Gradient-Rank and Moments for Memory-Efficient LLMs Training and Fine-Tuning [9.51289606759621]
大規模言語モデル(LLM)の訓練と微調整には、メモリと計算要求に関する課題が伴う。
低ランク適応(LoRA)など、これらの課題に対処する様々な技術が開発されている。
トレーニングが進むにつれて、推定勾配のランクが徐々に低下する現象に着想を得た新しい手法を導入する。
論文 参考訳(メタデータ) (2024-10-23T13:53:26Z) - InRank: Incremental Low-Rank Learning [85.6380047359139]
勾配に基づくトレーニングは、トレーニング中のランクの段階的な増加を通じて、ニューラルネットワークを低ランクのソリューションに向けて暗黙的に正規化する。
既存のトレーニングアルゴリズムでは、計算効率を向上させるために、ローランクな特性を活用できない。
InRank(Incremental Low-Rank Learning)は,低ランク行列として累積重み更新を明示的に表現する学習アルゴリズムである。
論文 参考訳(メタデータ) (2023-06-20T03:03:04Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep
Neural Network, a Survey [69.3939291118954]
最先端のディープラーニングモデルには、何十億にも達するパラメータカウントがある。そのようなモデルのトレーニング、保存、転送は、エネルギーと時間を要するため、コストがかかる。
モデル圧縮は、ストレージと転送コストを低減し、フォワードおよび/または後方パスでの計算数を減少させることで、トレーニングをより効率的にすることができる。
この研究は、トレーニング全体を通してディープラーニングモデルでトレーニングされた重量を減らす方法に関する調査である。
論文 参考訳(メタデータ) (2022-05-17T05:37:08Z) - Tricks and Plugins to GBM on Images and Sequences [18.939336393665553]
本稿では,動的特徴選択とBoostCNNの利点を組み合わせるために,Deep Convolutional Neural Networks(BoostCNN)を高速化するアルゴリズムを提案する。
また,最小2乗の目的関数に基づいて,重み付けをディープラーニングアーキテクチャに組み込むアルゴリズムも提案する。
実験により,提案手法はいくつかのきめ細かい分類タスクのベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-03-01T21:59:00Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - Dynamic Sparse Training for Deep Reinforcement Learning [36.66889208433228]
我々は,ニューラルネットワークをスクラッチから切り離した深層強化学習エージェントを動的に訓練する試みを初めて提案する。
私たちのアプローチは、既存の深層強化学習アルゴリズムに簡単に統合できます。
我々は,オープンAI体育連続制御タスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-08T09:57:20Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
オールオンス量子化ネットワークを効率的にトレーニングするための新しい共同知識伝達アプローチを開発しています。
具体的には、低精度の学生に知識を伝達するための高精度のエンクォータを選択するための適応的選択戦略を提案する。
知識を効果的に伝達するために,低精度の学生ネットワークのブロックを高精度の教師ネットワークのブロックにランダムに置き換える動的ブロックスワッピング法を開発した。
論文 参考訳(メタデータ) (2021-03-02T03:09:03Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
本稿では,ガウス過程の回帰と組み合わせて実数値列を生成する,計算効率のよいアテンションベースネットワークを提案する。
我々は,GPがフルバッチを用いて訓練されている間,ネットワークのミニバッチトレーニングを可能にするブロックワイズトレーニングアルゴリズムを開発した。
アルゴリズムは収束することが証明され、より良くなくても、見いだされた解の品質に匹敵することを示す。
論文 参考訳(メタデータ) (2021-02-10T01:19:15Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。