論文の概要: Learning with Stochastic Orders
- arxiv url: http://arxiv.org/abs/2205.13684v1
- Date: Fri, 27 May 2022 00:08:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:02:36.537110
- Title: Learning with Stochastic Orders
- Title(参考訳): 確率的順序による学習
- Authors: Carles Domingo-Enrich, Yair Schiff, Youssef Mroueh
- Abstract要約: 高次元分布の学習は、しばしば、積分確率メトリクス(IPMs)による明示的な可能性モデリングまたは暗黙的なモデリングによって行われる。
我々はIPMsationalの代替として使用できる確率測度間のChoquet-Toland距離を導入する。
また、変動支配基準(VDC)を導入し、支配制約のある確率測度を学習する。
- 参考スコア(独自算出の注目度): 25.795107089736295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning high-dimensional distributions is often done with explicit
likelihood modeling or implicit modeling via minimizing integral probability
metrics (IPMs). In this paper, we expand this learning paradigm to stochastic
orders, namely, the convex or Choquet order between probability measures.
Towards this end, we introduce the Choquet-Toland distance between probability
measures, that can be used as a drop-in replacement for IPMs. We also introduce
the Variational Dominance Criterion (VDC) to learn probability measures with
dominance constraints, that encode the desired stochastic order between the
learned measure and a known baseline. We analyze both quantities and show that
they suffer from the curse of dimensionality and propose surrogates via input
convex maxout networks (ICMNs), that enjoy parametric rates. Finally, we
provide a min-max framework for learning with stochastic orders and validate it
experimentally on synthetic and high-dimensional image generation, with
promising results. The code is available at
https://github.com/yair-schiff/stochastic-orders-ICMN
- Abstract(参考訳): 高次元分布の学習は、しばしば、積分確率メトリクス(IPM)を最小化することで、明示的な確度モデリングや暗黙的なモデリングによって行われる。
本稿では,この学習パラダイムを確率的順序,すなわち確率的測度間の凸あるいはチョーケ順序に拡張する。
この目的に向けて,ipmのドロップイン代替として使用できる確率測度間のコケ・トランド距離を導入する。
また,学習した指標と既知の基準との確率的順序を符号化する,支配制約付き確率測度を学習するために,変分支配基準(VDC)を導入する。
両方の量を分析し,次元の呪いに苦しむことを証明し,パラメトリックレートを満足する入力凸maxout network (icmns) によるサロゲートを提案する。
最後に,確率的順序で学習し,合成および高次元画像生成を実験的に検証するためのmin-maxフレームワークを提供し,有望な結果を得た。
コードはhttps://github.com/yair-schiff/stochastic-orders-ICMNで入手できる。
関連論文リスト
- A Method of Moments Embedding Constraint and its Application to Semi-Supervised Learning [2.8266810371534152]
線形+ソフトマックス最終層を持つ非ネイティブなディープラーニングモデルには問題がある。
ラテント空間は条件付き確率$p(Y|X)$だけを予測するが、完全関節分布$p(Y,X)$は予測しない。
このことは、幻覚、不明瞭なバイアス、大規模なデータセットへの依存など、多くの問題に影響を及ぼす過信モデルをさらに悪化させる。
論文 参考訳(メタデータ) (2024-04-27T18:41:32Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Learning Distributions via Monte-Carlo Marginalization [9.131712404284876]
サンプルから抽出可能な分布を学習する新しい手法を提案する。
モンテカルロ・マルギナライゼーション(MCMarg)はこの問題に対処するために提案されている。
提案手法は複雑な分布を学習するための強力なツールであり、プロセス全体が微分可能である。
論文 参考訳(メタデータ) (2023-08-11T19:08:06Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
本稿では,事前学習された視覚言語モデルの埋め込みに対する確率分布を推定する確率的アダプタProbVLMを提案する。
本稿では,検索タスクにおける不確実性埋め込みのキャリブレーションを定量化し,ProbVLMが他の手法よりも優れていることを示す。
本稿では,大規模な事前学習型潜伏拡散モデルを用いて,埋め込み分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-01T18:16:06Z) - Online Probabilistic Model Identification using Adaptive Recursive MCMC [8.465242072268019]
適応再帰的マルコフ連鎖モンテカルロ法(ARMCMC)を提案する。
モデルパラメータの確率密度関数全体を計算しながら、従来のオンライン手法の欠点を解消する。
本研究では,ソフト曲げアクチュエータとハント・クロスリー動的モデルを用いてパラメータ推定を行った。
論文 参考訳(メタデータ) (2022-10-23T02:06:48Z) - A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning [49.999268109518255]
プロキシベースのDeep Metric Learningは、クラス代表者(プロキシ)に画像を埋め込むことで学習する
さらに、プロキシベースのDMLは、クラス内部構造を学ぶのに苦労している。
両問題に対処するために,非等方的確率的プロキシベースDMLを導入する。
論文 参考訳(メタデータ) (2022-07-08T09:34:57Z) - SIXO: Smoothing Inference with Twisted Objectives [8.049531918823758]
SIXOは平滑な分布を近似する対象を学習する手法である。
次に、これらの学習対象とSMCを用いて、モデル学習と提案学習の変動目標を定義する。
論文 参考訳(メタデータ) (2022-06-13T07:46:35Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
カーネル技術は、データサイエンスにおいて最も人気があり柔軟なアプローチの一つである。
平均埋め込みは、最大平均不一致(MMD)と呼ばれる分岐測度をもたらす。
本稿では,基礎となる分布の1つの平均埋め込みが解析的に利用可能である場合のMDD推定の問題に焦点をあてる。
論文 参考訳(メタデータ) (2021-10-15T21:29:27Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。