論文の概要: Semeval-2022 Task 1: CODWOE -- Comparing Dictionaries and Word
Embeddings
- arxiv url: http://arxiv.org/abs/2205.13858v1
- Date: Fri, 27 May 2022 09:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 01:59:30.218314
- Title: Semeval-2022 Task 1: CODWOE -- Comparing Dictionaries and Word
Embeddings
- Title(参考訳): Semeval-2022 Task 1: CODWOE -- 辞書と単語埋め込みの比較
- Authors: Timothee Mickus and Kees van Deemter and Mathieu Constant and Denis
Paperno
- Abstract要約: 我々は不透明な単語ベクトルと人間可読な定義との関係に焦点をあてる。
この問題は自然に2つのサブタスクに分けられる: 定義を埋め込みに変換し、埋め込みを定義に変換する。
このタスクは、同質に訓練された埋め込みの同等のセットを使用して、多言語設定で実行された。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Word embeddings have advanced the state of the art in NLP across numerous
tasks. Understanding the contents of dense neural representations is of utmost
interest to the computational semantics community. We propose to focus on
relating these opaque word vectors with human-readable definitions, as found in
dictionaries. This problem naturally divides into two subtasks: converting
definitions into embeddings, and converting embeddings into definitions. This
task was conducted in a multilingual setting, using comparable sets of
embeddings trained homogeneously.
- Abstract(参考訳): 単語の埋め込みは多くのタスクでNLPの最先端の技術を進歩させてきた。
密度の高い神経表現の内容を理解することは、計算意味論コミュニティにとって最も関心がある。
辞書で見られるように、不透明な単語ベクトルを人間可読な定義に関連付けることを提案する。
この問題は自然に2つのサブタスクに分割する:定義を埋め込みに変換し、埋め込みを定義に変換する。
このタスクは、同質に訓練された同種の埋め込みセットを使用して、多言語設定で実行された。
関連論文リスト
- Domain Embeddings for Generating Complex Descriptions of Concepts in
Italian Language [65.268245109828]
電子辞書から抽出した言語情報と語彙情報に富んだ分布意味資源を提案する。
リソースは21のドメイン固有の行列と1つの包括的なマトリックスとグラフィカルユーザインタフェースから構成される。
本モデルは,具体的概念知識に直接関連した行列を選択することにより,概念の意味的記述の推論を容易にする。
論文 参考訳(メタデータ) (2024-02-26T15:04:35Z) - Monolingual alignment of word senses and definitions in lexicographical
resources [0.0]
この論文の焦点は、辞書、特に辞書のアライメントである。
最初の課題は、2つの異なる単言語辞書における見出しの感覚定義を考慮し、最適なアライメントを見つけることである。
このベンチマークは、単語センスアライメントシステムの評価に使用することができる。
論文 参考訳(メタデータ) (2022-09-06T13:09:52Z) - IRB-NLP at SemEval-2022 Task 1: Exploring the Relationship Between Words
and Their Semantic Representations [0.0]
本研究は,CODWOEデータセットを用いた記述的,探索的,予測的データ分析に基づいて行った。
本稿では,定義モデリングとリバース辞書タスクのために設計したシステムの概要について述べる。
論文 参考訳(メタデータ) (2022-05-13T18:15:20Z) - A Survey On Neural Word Embeddings [0.4822598110892847]
自然言語処理における意味の研究は、分布仮説に依存する。
概念の分散表現という革命的な考えは、人間の心の働きに近い。
ニューラルワード埋め込みは、すべてのNLPタスクを大幅に改善することで、NLPの分野全体を変革した。
論文 参考訳(メタデータ) (2021-10-05T03:37:57Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - RAW-C: Relatedness of Ambiguous Words--in Context (A New Lexical
Resource for English) [2.792030485253753]
文脈的埋め込みが単語の意味の連続的、動的性質にどの程度適合しているかを評価する。
我々は、コサイン距離が、人間が同じ単語の感覚をいかに利用しているかを体系的に過小評価していることを示す。
本稿では,精神語彙の心理言語学理論と語彙意味論の計算モデルとの合成を提案する。
論文 参考訳(メタデータ) (2021-05-27T16:07:13Z) - SemGloVe: Semantic Co-occurrences for GloVe from BERT [55.420035541274444]
GloVeは単語共起行列からの統計情報を利用して単語埋め込みを学ぶ。
BERTから静的なGloVeワード埋め込みに意味的共起を蒸留するSemGloVeを提案します。
論文 参考訳(メタデータ) (2020-12-30T15:38:26Z) - SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in
BERT-based Embedding Spaces [63.17308641484404]
本稿では,異なる単語の意味の表現として,各単語の異なる事象のクラスタを特定することを提案する。
得られたクラスタの分解は、自然に4つのターゲット言語において、各ターゲットワードごとの意味的シフトのレベルを定量化することができる。
当社のアプローチは,提供されたすべてのSemEvalベースラインを抜いて,個別(言語毎)と全体の両方で良好に動作します。
論文 参考訳(メタデータ) (2020-10-02T08:38:40Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
我々は,単語の集合を互いに近づけることで,単語の埋め込み空間の一部を調整できるようにする。
提案手法では,単語埋め込みにおける潜在的なバイアスをユーザが操作する際,選択的な後処理をトリガーし,評価することができる。
論文 参考訳(メタデータ) (2020-09-30T21:54:22Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z) - RUSSE'2020: Findings of the First Taxonomy Enrichment Task for the
Russian language [70.27072729280528]
本稿では,ロシア語の分類学的豊か化に関する最初の共有課題の結果について述べる。
16チームがこのタスクに参加し、半数以上が提供されたベースラインを上回った。
論文 参考訳(メタデータ) (2020-05-22T13:30:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。