MIMII DG: Sound Dataset for Malfunctioning Industrial Machine
Investigation and Inspection for Domain Generalization Task
- URL: http://arxiv.org/abs/2205.13879v1
- Date: Fri, 27 May 2022 10:19:16 GMT
- Title: MIMII DG: Sound Dataset for Malfunctioning Industrial Machine
Investigation and Inspection for Domain Generalization Task
- Authors: Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo,
Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi
- Abstract summary: We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD)
In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG.
- Score: 9.17388311687786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a machine sound dataset to benchmark domain generalization
techniques for anomalous sound detection (ASD). To handle performance
degradation caused by domain shifts that are difficult to detect or too
frequent to adapt, domain generalization techniques are preferred. However,
currently available datasets have difficulties in evaluating these techniques,
such as limited number of values for parameters that cause domain shifts
(domain shift parameters). In this paper, we present the first ASD dataset for
the domain generalization techniques, called MIMII DG. The dataset consists of
five machine types and three domain shift scenarios for each machine type. We
prepared at least two values for the domain shift parameters in the source
domain. Also, we introduced domain shifts that can be difficult to notice.
Experimental results using two baseline systems indicate that the dataset
reproduces the domain shift scenarios and is useful for benchmarking domain
generalization techniques.
Related papers
- Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
arXiv Detail & Related papers (2024-05-24T22:13:31Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
We introduce a strong DETR-based detector named Domain Adaptive detection TRansformer ( DATR) for unsupervised domain adaptation of object detection.
Our proposed DATR incorporates a mean-teacher based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias.
Experiments demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios.
arXiv Detail & Related papers (2024-05-20T03:48:45Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Industrial Anomaly Detection with Domain Shift: A Real-world Dataset and
Masked Multi-scale Reconstruction [2.921945366485149]
Industrial anomaly detection (IAD) is crucial for automating industrial quality inspection.
Existing IAD datasets focus on the diversity of data categories.
We propose the Aero-engine Blade Anomaly Detection (AeBAD) dataset, consisting of two sub-datasets.
arXiv Detail & Related papers (2023-04-05T04:07:54Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Domain Adaptation for Time-Series Classification to Mitigate Covariate
Shift [3.071136270246468]
This paper proposes a novel supervised domain adaptation based on two steps.
First, we search for an optimal class-dependent transformation from the source to the target domain from a few samples.
Second, we use embedding similarity techniques to select the corresponding transformation at inference.
arXiv Detail & Related papers (2022-04-07T10:27:14Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - MIMII DUE: Sound Dataset for Malfunctioning Industrial Machine
Investigation and Inspection with Domain Shifts due to Changes in Operational
and Environmental Conditions [5.441198440485553]
This paper introduces a new dataset for malfunctioning industrial machine investigation and inspection with domain shifts.
To check the robustness against domain shifts, we need a dataset with domain shifts.
The dataset is a subset of the dataset for DCASE 2021 Challenge Task 2 and freely available at https://zenodo.org/record/4740355.
arXiv Detail & Related papers (2021-05-06T14:18:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.