Deep Reinforcement Learning for Distributed and Uncoordinated Cognitive
Radios Resource Allocation
- URL: http://arxiv.org/abs/2205.13944v1
- Date: Fri, 27 May 2022 12:43:30 GMT
- Title: Deep Reinforcement Learning for Distributed and Uncoordinated Cognitive
Radios Resource Allocation
- Authors: Ankita Tondwalkar and Andres Kwasinski
- Abstract summary: This paper presents a novel deep reinforcement learning-based resource allocation technique for the multi-agent environment presented by a cognitive radio network.
The presented algorithm converges in an arbitrarily long time to equilibrium policies in the non-stationary environment.
It is shown that the use of a standard single-agent deep reinforcement learning approach may not achieve convergence when used in an uncoordinated interacting multi-radio scenario.
- Score: 1.218340575383456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel deep reinforcement learning-based resource
allocation technique for the multi-agent environment presented by a cognitive
radio network where the interactions of the agents during learning may lead to
a non-stationary environment. The resource allocation technique presented in
this work is distributed, not requiring coordination with other agents. It is
shown by considering aspects specific to deep reinforcement learning that the
presented algorithm converges in an arbitrarily long time to equilibrium
policies in a non-stationary multi-agent environment that results from the
uncoordinated dynamic interaction between radios through the shared wireless
environment. Simulation results show that the presented technique achieves a
faster learning performance compared to an equivalent table-based Q-learning
algorithm and is able to find the optimal policy in 99% of cases for a
sufficiently long learning time. In addition, simulations show that our DQL
approach requires less than half the number of learning steps to achieve the
same performance as an equivalent table-based implementation. Moreover, it is
shown that the use of a standard single-agent deep reinforcement learning
approach may not achieve convergence when used in an uncoordinated interacting
multi-radio scenario
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Addressing the issue of stochastic environments and local
decision-making in multi-objective reinforcement learning [0.0]
Multi-objective reinforcement learning (MORL) is a relatively new field which builds on conventional Reinforcement Learning (RL)
This thesis focuses on what factors influence the frequency with which value-based MORL Q-learning algorithms learn the optimal policy for an environment.
arXiv Detail & Related papers (2022-11-16T04:56:42Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks.
We show that Quality Diversity (QD) methods are a competitive alternative to information-theory-augmented RL for skill discovery.
arXiv Detail & Related papers (2022-10-06T11:06:39Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
arXiv Detail & Related papers (2020-10-29T06:20:40Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.