論文の概要: CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model
Behavior
- arxiv url: http://arxiv.org/abs/2205.14140v1
- Date: Fri, 27 May 2022 17:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:37:53.087875
- Title: CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model
Behavior
- Title(参考訳): CEBaB:NLPモデル行動に対する実世界の概念の因果効果の推定
- Authors: Eldar David Abraham, Karel D'Oosterlinck, Amir Feder, Yair Ori Gat,
Atticus Geiger, Christopher Potts, Roi Reichart, Zhengxuan Wu
- Abstract要約: 実世界の概念がMLモデルの出力挙動に与える影響を推定する因果推論問題として、モデル説明をキャストした。
自然言語処理(NLP)における概念に基づく説明手法を評価するための新しいベンチマークデータセットCEBaBを紹介する。
CEBaBを用いて,様々な仮定や概念を網羅した概念に基づく説明手法の質を比較した。
- 参考スコア(独自算出の注目度): 26.248879735549277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing size and complexity of modern ML systems has improved their
predictive capabilities but made their behavior harder to explain. Many
techniques for model explanation have been developed in response, but we lack
clear criteria for assessing these techniques. In this paper, we cast model
explanation as the causal inference problem of estimating causal effects of
real-world concepts on the output behavior of ML models given actual input
data. We introduce CEBaB, a new benchmark dataset for assessing concept-based
explanation methods in Natural Language Processing (NLP). CEBaB consists of
short restaurant reviews with human-generated counterfactual reviews in which
an aspect (food, noise, ambiance, service) of the dining experience was
modified. Original and counterfactual reviews are annotated with
multiply-validated sentiment ratings at the aspect-level and review-level. The
rich structure of CEBaB allows us to go beyond input features to study the
effects of abstract, real-world concepts on model behavior. We use CEBaB to
compare the quality of a range of concept-based explanation methods covering
different assumptions and conceptions of the problem, and we seek to establish
natural metrics for comparative assessments of these methods.
- Abstract(参考訳): 現代のMLシステムのサイズと複雑さの増大により、予測能力は向上したが、その振る舞いを説明するのが難しくなった。
モデル説明のための手法は数多く開発されてきたが,これらの手法を評価するための明確な基準は見当たらない。
本稿では,実際の入力データに対するmlモデルの出力行動に対する実世界概念の因果効果を推定する因果推論問題としてモデル説明をキャストする。
本稿では,自然言語処理(NLP)における概念に基づく説明手法を評価するためのベンチマークデータセットCEBaBを紹介する。
CEBaBは、食体験の側面(食品、騒音、環境、サービス)を改変した、人為的な偽物レビューによる短いレストランレビューで構成されている。
オリジナルレビューと反事実レビューは、アスペクトレベルとレビューレベルの複数の評価で注釈付けされる。
CEBaBのリッチな構造により、入力機能を超えて、抽象的で現実的な概念がモデル行動に与える影響を研究することができます。
CEBaBを用いて,様々な仮定や概念を網羅した概念に基づく説明手法の質を比較し,これらの手法の比較評価のための自然な指標の確立を目指す。
関連論文リスト
- DEAL: Disentangle and Localize Concept-level Explanations for VLMs [10.397502254316645]
大きな訓練済みのビジョンランゲージモデルでは、きめ細かい概念を特定できないかもしれない。
本研究では,人間のアノテーションを使わずに概念のDisEnt and Localize(アングル)概念レベルの説明を提案する。
実験結果から,提案手法はモデルの概念レベルの説明を,不整合性と局所性の観点から著しく改善することを示した。
論文 参考訳(メタデータ) (2024-07-19T15:39:19Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Estimation of Concept Explanations Should be Uncertainty Aware [39.598213804572396]
概念説明(Concept Explanations)と呼ばれる特定の概念について研究し、人間の理解可能な概念を用いてモデルを解釈することを目的としている。
簡単な解釈で人気があるが、概念的な説明は騒々しいことが知られている。
本稿では,これらの問題に対処する不確実性を考慮したベイズ推定手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T11:17:27Z) - Benchmarking and Enhancing Disentanglement in Concept-Residual Models [4.177318966048984]
概念ボトルネックモデル (CBM) は、まず意味論的に意味のある一連の特徴を予測する解釈可能なモデルである。
CBMの性能はエンジニアリングされた機能に依存しており、不完全な概念のセットに苦しむことがある。
本研究は,情報漏洩を解消するための3つの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-30T21:07:26Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Evaluation Gaps in Machine Learning Practice [13.963766987258161]
実際に、機械学習モデルの評価は、しばしば、非文脈化された予測行動の狭い範囲に焦点を当てる。
評価対象の理想化された幅と実際の評価対象の狭い焦点との間の評価ギャップについて検討した。
これらの特性を研究することで、規範的な影響を持つコミットメントの範囲について、機械学習分野の暗黙の仮定を実証する。
論文 参考訳(メタデータ) (2022-05-11T04:00:44Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
資源豊富なレビュー評価分類データセットから低リソースタスクTOWEへ意見知識を伝達する新しいモデルを提案する。
我々のモデルは、他の最先端手法よりも優れた性能を達成し、意見の知識を伝達することなく、ベースモデルを大幅に上回る。
論文 参考訳(メタデータ) (2020-01-07T11:50:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。