論文の概要: Exemplar Free Class Agnostic Counting
- arxiv url: http://arxiv.org/abs/2205.14212v1
- Date: Fri, 27 May 2022 19:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 16:13:31.460493
- Title: Exemplar Free Class Agnostic Counting
- Title(参考訳): Exemplar Free Class Agnostic Counting
- Authors: Viresh Ranjan and Minh Hoai
- Abstract要約: クラス非依存カウントは、そのカテゴリのラベル付きトレーニングデータにアクセスせずに、新しいオブジェクトカテゴリのオブジェクトをテスト時にカウントすることを目的としている。
提案手法は,まず画像中のオブジェクトの繰り返しから例を識別し,次に繰り返しオブジェクトをカウントする。
FSC-147データセットに対する提案手法の評価を行い,既存手法と比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 28.41525571128706
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We tackle the task of Class Agnostic Counting, which aims to count objects in
a novel object category at test time without any access to labeled training
data for that category. All previous class agnostic counting methods cannot
work in a fully automated setting, and require computationally expensive test
time adaptation. To address these challenges, we propose a visual counter which
operates in a fully automated setting and does not require any test time
adaptation. Our proposed approach first identifies exemplars from repeating
objects in an image, and then counts the repeating objects. We propose a novel
region proposal network for identifying the exemplars. After identifying the
exemplars, we obtain the corresponding count by using a density estimation
based Visual Counter. We evaluate our proposed approach on FSC-147 dataset, and
show that it achieves superior performance compared to the existing approaches.
- Abstract(参考訳): テスト時に新しいオブジェクトカテゴリのオブジェクトを、そのカテゴリのラベル付きトレーニングデータにアクセスせずにカウントすることを目的としたクラス非依存カウントの課題に取り組む。
従来のクラス非依存カウント手法は、完全に自動化された環境では機能せず、計算に高価なテスト時間適応を必要とする。
これらの課題に対処するため,我々は,完全に自動で動作し,テスト時間適応を必要としない視覚カウンタを提案する。
提案手法は,まず画像中のオブジェクトの繰り返しから例を識別し,次に繰り返しオブジェクトをカウントする。
本稿では,その先駆者を特定するための新しい地域提案ネットワークを提案する。
実例を同定した後、密度推定に基づく視覚的カウンタを用いて対応するカウントを求める。
FSC-147データセットに対する提案手法の評価を行い,既存手法と比較して優れた性能を示す。
関連論文リスト
- Mind the Prompt: A Novel Benchmark for Prompt-based Class-Agnostic Counting [8.000723123087473]
CAC(Class-Agnostic counting)は、コンピュータビジョンにおける最近の課題であり、モデルトレーニング中に見たことのない任意のオブジェクトクラスのインスタンス数を推定することを目的としている。
Prompt-Aware Countingベンチマークを導入する。このベンチマークは2つのターゲットテストで構成されており、それぞれに適切な評価指標が伴っている。
論文 参考訳(メタデータ) (2024-09-24T10:35:42Z) - A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
本研究の目的は,ボックス,ポイント,テキストなど,さまざまなプロンプト型で示されるオブジェクトの密度マップを生成することができる包括的プロンプトベースのカウントフレームワークを確立することである。
本モデルは,クラスに依存しない顕著なデータセットに優れ,データセット間の適応タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T12:05:44Z) - Zero-Shot Object Counting with Language-Vision Models [50.1159882903028]
クラスに依存しないオブジェクトカウントは、テスト時に任意のクラスのオブジェクトインスタンスをカウントすることを目的としている。
現在の手法では、新しいカテゴリではしばしば利用できない入力として、人間に注釈をつけた模範を必要とする。
テスト期間中にクラス名のみを利用できる新しい設定であるゼロショットオブジェクトカウント(ZSC)を提案する。
論文 参考訳(メタデータ) (2023-09-22T14:48:42Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
トレーニングセットから高品質な擬似アノテーションを抽出するための簡単な擬似ラベリング手法を提案する。
擬似ラベリングプロセスの精度を向上させるための2つの新しい手法を提案する。
提案手法は,既存手法と比較して,最先端ないし第2の性能を実現する。
論文 参考訳(メタデータ) (2021-12-10T18:59:06Z) - Single Image Object Counting and Localizing using Active-Learning [4.56877715768796]
単一画像シナリオにおける反復オブジェクトのカウントとローカライズのための新しい手法を提案する。
本手法は,少数のアクティブ・ラーニング・イテレーションにおいて,入力画像から注意深く収集したラベルの小さなセットに対してCNNを訓練する。
既存のユーザ支援カウント法と比較すると,ユーザマウスのクリック数,ランニングタイムの計測と位置決めの精度の観点から,能動的学習が最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2021-11-16T11:29:21Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z) - Rethinking Object Detection in Retail Stores [55.359582952686175]
そこで我々はLocountと略される新しいタスク、同時にオブジェクトのローカライゼーションとカウントを提案する。
Locountは、関心のあるオブジェクトのグループをインスタンス数でローカライズするアルゴリズムを必要とする。
大規模オブジェクトのローカライズと数えるデータセットを小売店で収集する。
論文 参考訳(メタデータ) (2020-03-18T14:01:54Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEtは、いくつかの例でクラスオブジェクトの検出を漸進的に学習する検出器である。
ONCEはインクリメンタルな学習パラダイムを十分に尊重しており、新しいクラス登録では、数発のトレーニングサンプルを1回だけフォワードパスするだけでよい。
論文 参考訳(メタデータ) (2020-03-10T12:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。