論文の概要: A New High-Performance Approach to Approximate Pattern-Matching for
Plagiarism Detection in Blockchain-Based Non-Fungible Tokens (NFTs)
- arxiv url: http://arxiv.org/abs/2205.14492v1
- Date: Sat, 28 May 2022 17:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 18:48:03.932367
- Title: A New High-Performance Approach to Approximate Pattern-Matching for
Plagiarism Detection in Blockchain-Based Non-Fungible Tokens (NFTs)
- Title(参考訳): ブロックチェーンベース非ファンジブルトークン(NFT)におけるプラジャリズム検出のための近似パターンマッチングのための新しい高性能手法
- Authors: Ciprian Pungila, Darius Galis, Viorel Negru
- Abstract要約: NDFAに基づく手法を用いて, プラジャリズム検出のためのパターンマッチングを高速かつ革新的に行う手法を提案する。
ブロックチェーンベースのNFT(Non-fungible tokens)という文脈で、私たちのアプローチの利点を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are presenting a fast and innovative approach to performing approximate
pattern-matching for plagiarism detection, using an NDFA-based approach that
significantly enhances performance compared to other existing similarity
measures. We outline the advantages of our approach in the context of
blockchain-based non-fungible tokens (NFTs). We present, formalize, discuss and
test our proposed approach in several real-world scenarios and with different
similarity measures commonly used in plagiarism detection, and observe
significant throughput enhancements throughout the entire spectrum of tests,
with little to no compromises on the accuracy of the detection process overall.
We conclude that our approach is suitable and adequate to perform approximate
pattern-matching for plagiarism detection, and outline research directions for
future improvements.
- Abstract(参考訳): 我々は,NDFAに基づく手法を用いて,従来の類似度と比べ,性能を著しく向上させる,近似パターンマッチングを高速かつ革新的な手法を提案する。
ブロックチェーンベースのNFT(Non-fungible tokens)のコンテキストにおいて、私たちのアプローチの利点を概説する。
提案手法を,複数の実世界のシナリオで提示し,議論し,検証し,比較する。また,盗作検出によく用いられる類似性尺度を用いて,検出プロセス全体の精度にほとんど妥協なく,テストのスペクトル全体にわたって,大幅なスループット向上を観察する。
本手法は, プラジャリズム検出のためのパターンマッチングに適しており, 今後の改善に向けた研究の方向性を概説する。
関連論文リスト
- Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - A Minimax Approach Against Multi-Armed Adversarial Attacks Detection [31.971443221041174]
多武装の敵攻撃は、最先端の検出器を騙すことに成功している。
本稿では,複数の事前学習型検出器のソフト・確率出力をミニマックス・アプローチで集約する手法を提案する。
我々は,アグリゲーションが,多腕対人攻撃に対する個々の最先端検出器より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-04T18:21:22Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Demystifying Unsupervised Semantic Correspondence Estimation [13.060538447838303]
教師なし学習のレンズによる意味対応推定について検討する。
我々は、最近提案された複数の課題データセットにまたがる教師なしの手法を徹底的に評価した。
本稿では,事前学習した特徴の強さを活かし,トレーニング中のより優れた試合を奨励する,新しい教師なし対応手法を提案する。
論文 参考訳(メタデータ) (2022-07-11T17:59:51Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z) - Revisiting The Evaluation of Class Activation Mapping for
Explainability: A Novel Metric and Experimental Analysis [54.94682858474711]
クラスアクティベーションマッピング(cam)アプローチは、アクティベーションマップの平均を重み付けすることで、効果的な可視化を提供する。
説明マップを定量化するための新しいメトリクスセットを提案し、より効果的な方法を示し、アプローチ間の比較を簡素化します。
論文 参考訳(メタデータ) (2021-04-20T21:34:24Z) - Uncertainty Surrogates for Deep Learning [17.868995105624023]
不確実性サーロゲートを用いて深層ネットワークにおける予測不確実性を推定する新しい方法を紹介します。
これらのサーロゲートは、事前定義されたパターンに一致させるように強制される深いネットワークの衝動層の特徴です。
予測の不確実性や分布異常検出の推定に,本手法の有用性を示す。
論文 参考訳(メタデータ) (2021-04-16T14:50:28Z) - Incremental Verification of Fixed-Point Implementations of Neural
Networks [0.19573380763700707]
インクリメンタル境界モデル検査(BMC)、満足度変調理論(SMT)、不変推論を用いた新しいシンボル検証フレームワークの開発と評価を行った。
提案手法は,異なる入力画像を考慮した21の試験事例の85.8%,カバー手法に関連する特性の100%を検証・生成することができた。
論文 参考訳(メタデータ) (2020-12-21T10:03:44Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。