Dynamic Graph Learning Based on Hierarchical Memory for
Origin-Destination Demand Prediction
- URL: http://arxiv.org/abs/2205.14593v1
- Date: Sun, 29 May 2022 07:52:35 GMT
- Title: Dynamic Graph Learning Based on Hierarchical Memory for
Origin-Destination Demand Prediction
- Authors: Ruixing Zhang, Liangzhe Han, Boyi Liu, Jiayuan Zeng, Leilei Sun
- Abstract summary: This paper provides a dynamic graph representation learning framework for OD demands prediction.
In particular, a hierarchical memory updater is first proposed to maintain a time-aware representation for each node.
Atemporal propagation mechanism is provided to aggregate representations of neighbor nodes along a randomtemporal route.
An objective function is designed to derive the future OD demands according to the most recent node.
- Score: 12.72319550363076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed a rapid growth of applying deep spatiotemporal
methods in traffic forecasting. However, the prediction of origin-destination
(OD) demands is still a challenging problem since the number of OD pairs is
usually quadratic to the number of stations. In this case, most of the existing
spatiotemporal methods fail to handle spatial relations on such a large scale.
To address this problem, this paper provides a dynamic graph representation
learning framework for OD demands prediction. In particular, a hierarchical
memory updater is first proposed to maintain a time-aware representation for
each node, and the representations are updated according to the most recently
observed OD trips in continuous-time and multiple discrete-time ways. Second, a
spatiotemporal propagation mechanism is provided to aggregate representations
of neighbor nodes along a random spatiotemporal route which treats origin and
destination as two different semantic entities. Last, an objective function is
designed to derive the future OD demands according to the most recent node
representations, and also to tackle the data sparsity problem in OD prediction.
Extensive experiments have been conducted on two real-world datasets, and the
experimental results demonstrate the superiority of the proposed method. The
code and data are available at https://github.com/Rising0321/HMOD.
Related papers
- Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting [17.530885640317372]
We propose a novel prompt tuning-based continuous forecasting method.
Specifically, we integrate the base-temporal graph neural network with a continuous prompt pool stored in memory.
This method ensures that the model sequentially learns from the widespread-temporal data stream to accomplish tasks for corresponding periods.
arXiv Detail & Related papers (2024-10-16T14:12:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
We propose a temporal graph neural point process framework, named STNPP, for traffic congestion event prediction.
Our method achieves superior performance in comparison to existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-11-15T01:22:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.