Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction
- URL: http://arxiv.org/abs/2311.08635v1
- Date: Wed, 15 Nov 2023 01:22:47 GMT
- Title: Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction
- Authors: Guangyin Jin, Lingbo Liu, Fuxian Li, Jincai Huang
- Abstract summary: We propose a temporal graph neural point process framework, named STNPP, for traffic congestion event prediction.
Our method achieves superior performance in comparison to existing state-of-the-art approaches.
- Score: 16.530361912832763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic congestion event prediction is an important yet challenging task in
intelligent transportation systems. Many existing works about traffic
prediction integrate various temporal encoders and graph convolution networks
(GCNs), called spatio-temporal graph-based neural networks, which focus on
predicting dense variables such as flow, speed and demand in time snapshots,
but they can hardly forecast the traffic congestion events that are sparsely
distributed on the continuous time axis. In recent years, neural point process
(NPP) has emerged as an appropriate framework for event prediction in
continuous time scenarios. However, most conventional works about NPP cannot
model the complex spatio-temporal dependencies and congestion evolution
patterns. To address these limitations, we propose a spatio-temporal graph
neural point process framework, named STGNPP for traffic congestion event
prediction. Specifically, we first design the spatio-temporal graph learning
module to fully capture the long-range spatio-temporal dependencies from the
historical traffic state data along with the road network. The extracted
spatio-temporal hidden representation and congestion event information are then
fed into a continuous gated recurrent unit to model the congestion evolution
patterns. In particular, to fully exploit the periodic information, we also
improve the intensity function calculation of the point process with a periodic
gated mechanism. Finally, our model simultaneously predicts the occurrence time
and duration of the next congestion. Extensive experiments on two real-world
datasets demonstrate that our method achieves superior performance in
comparison to existing state-of-the-art approaches.
Related papers
- Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
Traffic flow forecasting is a fundamental research issue for transportation planning and management.
In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting.
However, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed.
arXiv Detail & Related papers (2024-02-02T08:55:23Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
We propose a Multi-Scale Spatial-Temporal Recurrent Network for traffic flow prediction, namely MSSTRN.
We propose a spatial-temporal synchronous attention mechanism that integrates adaptive position graph convolutions into the self-attention mechanism to achieve synchronous capture of spatial-temporal dependencies.
Our model achieves the best prediction accuracy with non-trivial margins compared to all the twenty baseline methods.
arXiv Detail & Related papers (2023-10-12T08:52:36Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.