論文の概要: SFE-AI at SemEval-2022 Task 11: Low-Resource Named Entity Recognition
using Large Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2205.14660v1
- Date: Sun, 29 May 2022 13:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 12:41:48.414877
- Title: SFE-AI at SemEval-2022 Task 11: Low-Resource Named Entity Recognition
using Large Pre-trained Language Models
- Title(参考訳): SemEval-2022タスク11におけるSFE-AI:大規模事前学習言語モデルを用いた低リソース名前付きエンティティ認識
- Authors: Changyu Hou, Jun Wang, Yixuan Qiao, Peng Jiang, Peng Gao, Guotong Xie,
Qizhi Lin, Xiaopeng Wang, Xiandi Jiang, Benqi Wang, Qifeng Xiao
- Abstract要約: 本稿では,SemEval 2022 task11: MultiCoNERのNERシステムについて述べる。
異なる入力に対して各モデルに異なる重みを割り当てることで、多種多様なモデルの利点を効果的に統合するためにトランスフォーマー層を採用した。
実験結果から,本手法はFarsiとオランダで優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 14.94542859759424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large scale pre-training models have been widely used in named entity
recognition (NER) tasks. However, model ensemble through parameter averaging or
voting can not give full play to the differentiation advantages of different
models, especially in the open domain. This paper describes our NER system in
the SemEval 2022 task11: MultiCoNER. We proposed an effective system to
adaptively ensemble pre-trained language models by a Transformer layer. By
assigning different weights to each model for different inputs, we adopted the
Transformer layer to integrate the advantages of diverse models effectively.
Experimental results show that our method achieves superior performances in
Farsi and Dutch.
- Abstract(参考訳): 大規模事前学習モデルは、名前付きエンティティ認識(NER)タスクで広く使われている。
しかし、パラメータ平均化や投票によるモデルアンサンブルは、特にオープンドメインにおいて異なるモデルの差別化の利点をフルに発揮することはできない。
本稿では,SemEval 2022 task11: MultiCoNERのNERシステムについて述べる。
本研究では,トランスフォーマー層による事前学習言語モデルを適応的にアンサンブルする効果的なシステムを提案する。
異なる入力に対して各モデルに異なる重みを割り当てることで、様々なモデルの利点を効果的に統合するためにトランスフォーマー層を採用した。
実験結果から,本手法はFarsiとオランダで優れた性能を発揮することが示された。
関連論文リスト
- Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Fisher Mask Nodes for Language Model Merging [0.0]
本稿では,トランスフォーマーの新たなモデルマージ手法について紹介し,フィッシャー重み付けにおける過去の研究成果とモデルプルーニングにおけるフィッシャー情報の利用について考察する。
提案手法は,BERTファミリーの各種モデルに対して,正規かつ顕著な性能向上を示し,計算コストのごく一部において,大規模フィッシャー重み付き平均値よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T21:52:26Z) - Jack of All Trades, Master of Some, a Multi-Purpose Transformer Agent [2.3967405016776384]
Jack of All Trades (JAT) は、シーケンシャルな意思決定タスクに最適化されたユニークな設計のトランスフォーマーベースのモデルである。
JATは、その種の最初のモデルはhttps://huggingface.co/jat-project/jatで完全にオープンソース化されている。
論文 参考訳(メタデータ) (2024-02-15T10:01:55Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z) - HyperTransformer: Model Generation for Supervised and Semi-Supervised
Few-Shot Learning [14.412066456583917]
本稿では,支援サンプルから直接畳み込みニューラルネットワーク(CNN)の重みを生成する,少数ショット学習のためのトランスフォーマーベースモデルを提案する。
本手法は,タスク非依存の定型埋め込みの学習が最適でない小ターゲットCNNアーキテクチャにおいて,特に有効である。
提案手法は,サポートセット内のラベルなしサンプルを利用した半教師付きシステムに拡張され,さらにショット性能が向上する。
論文 参考訳(メタデータ) (2022-01-11T20:15:35Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z) - TEASEL: A Transformer-Based Speech-Prefixed Language Model [4.014524824655106]
マルチモーダル言語分析は、話者の言葉、音響アノテーション、表情を同時にモデル化することを目的としている。
lexiconの機能は、Transformerベースのモデルを通じて大きなコーパスで事前訓練されているため、他のモダリティよりも優れている。
高いパフォーマンスにもかかわらず、新しい自己教師付き学習(SSL)トランスフォーマーを任意のモダリティでトレーニングすることは、データ不足のため通常は不可能である。
論文 参考訳(メタデータ) (2021-09-12T14:08:57Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
本稿では,シドニー大学とJDが共同でIWSLT 2021低リソース音声翻訳タスクを提出したことを述べる。
私たちは、公式に提供されたASRとMTデータセットでモデルをトレーニングしました。
翻訳性能の向上を目的として, バック翻訳, 知識蒸留, 多機能再構成, トランスダクティブファインタニングなど, 最新の効果的な手法について検討した。
論文 参考訳(メタデータ) (2021-07-24T09:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。