論文の概要: Comparison of meta-learners for estimating multi-valued treatment
heterogeneous effects
- arxiv url: http://arxiv.org/abs/2205.14714v3
- Date: Sat, 3 Jun 2023 13:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 05:11:53.135235
- Title: Comparison of meta-learners for estimating multi-valued treatment
heterogeneous effects
- Title(参考訳): 多値処理ヘテロジニアス効果推定のためのメタラーナーの比較
- Authors: Naoufal Acharki and Ramiro Lugo and Antoine Bertoncello and Josselin
Garnier
- Abstract要約: 条件平均処理効果(CATE)の推定は、観測データによる因果推論における主な課題の1つである。
メタラーナーと呼ばれる非パラメトリック推定器は、特定の教師付き学習方法に対する推定を抑えない主な利点として、CATEを推定するために開発された。
本稿では,多値処理の異種効果を推定するためのメタラーナーについて検討する。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional Average Treatment Effects (CATE) estimation is one of the main
challenges in causal inference with observational data. In addition to Machine
Learning based-models, nonparametric estimators called meta-learners have been
developed to estimate the CATE with the main advantage of not restraining the
estimation to a specific supervised learning method. This task becomes,
however, more complicated when the treatment is not binary as some limitations
of the naive extensions emerge. This paper looks into meta-learners for
estimating the heterogeneous effects of multi-valued treatments. We consider
different meta-learners, and we carry out a theoretical analysis of their error
upper bounds as functions of important parameters such as the number of
treatment levels, showing that the naive extensions do not always provide
satisfactory results. We introduce and discuss meta-learners that perform well
as the number of treatments increases. We empirically confirm the strengths and
weaknesses of those methods with synthetic and semi-synthetic datasets.
- Abstract(参考訳): 条件平均処理効果(CATE)の推定は、観測データによる因果推論における主な課題の1つである。
機械学習に基づくモデルに加えて、メタラーナーと呼ばれる非パラメトリック推定器が開発され、CATEを特定の教師付き学習手法による推定を抑えることの主な利点として評価されている。
しかし、単純拡張のいくつかの制限が現れるにつれて、この処理がバイナリでないと、このタスクはより複雑になる。
本稿では,多値処理の異種効果を推定するためのメタリーナーについて検討する。
異なるメタリーナーを考察し,その誤差上限を治療レベル数などの重要なパラメータの関数として理論的に解析し,naive拡張が必ずしも良好な結果をもたらすとは限らないことを示した。
治療数の増加とともに機能するメタラーナーの導入と議論を行う。
合成および半合成データセットを用いて,これらの手法の強みと弱みを実証的に確認する。
関連論文リスト
- Measuring Variable Importance in Individual Treatment Effect Estimation with High Dimensional Data [35.104681814241104]
因果機械学習(ML)は、個々の治療効果を推定するための強力なツールを提供する。
ML手法は、医療応用にとって重要な解釈可能性の重要な課題に直面している。
統計的に厳密な変数重要度評価のための条件置換重要度(CPI)法に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-23T11:44:07Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
我々は、CATE T-learnerを後処理するために、マルチ精度の予測子を学習するために方法論を使用する。
このアプローチは、(より大きな)確立された観測データと(より小さな)ランダム化されたデータセットを組み合わせることができることを示す。
論文 参考訳(メタデータ) (2024-05-28T14:12:25Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Proximal Causal Learning of Conditional Average Treatment Effects [0.0]
異種治療効果を学習するための2段階損失関数を提案する。
提案手法は,市販の損失最小化機械学習手法により実装できる。
論文 参考訳(メタデータ) (2023-01-26T02:56:36Z) - Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
Imbalanced Treatment Effects [41.06974193338288]
本稿では,治療群間のデータエピソードをメタラーニングタスクとみなす。
そこで本研究では,ソース処理グループから十分なサンプルを用いてメタラーナーを訓練し,対象治療における限られたサンプルによる勾配降下によるモデル更新を行う。
実世界の2つのデータセットの実験を行い、推測精度と一般化能力を評価する。
論文 参考訳(メタデータ) (2022-08-13T23:22:12Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。