論文の概要: Flexible Nonparametric Inference for Causal Effects under the Front-Door Model
- arxiv url: http://arxiv.org/abs/2312.10234v2
- Date: Thu, 17 Jul 2025 14:45:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.137257
- Title: Flexible Nonparametric Inference for Causal Effects under the Front-Door Model
- Title(参考訳): フロントドアモデル下での因果効果に対するフレキシブル非パラメトリック推論
- Authors: Anna Guo, David Benkeser, Razieh Nabi,
- Abstract要約: 本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
- 参考スコア(独自算出の注目度): 2.6900047294457683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating causal treatment effects in observational studies requires addressing confounding. While the back-door criterion enables identification through adjustment for observed covariates, it fails in the presence of unmeasured confounding. The front-door criterion offers an alternative by leveraging variables that fully mediate the treatment effect and are unaffected by unmeasured confounders of the treatment-outcome pair. We develop novel one-step and targeted minimum loss-based estimators for both the average treatment effect and the average treatment effect on the treated under front-door assumptions. Our estimators are built on multiple parameterizations of the observed data distribution, including approaches that avoid modeling the mediator density entirely, and are compatible with flexible, machine learning-based nuisance estimation. We establish conditions for root-$n$ consistency and asymptotic linearity by deriving second-order remainder bounds. We also develop flexible tests for assessing identification assumptions, including a doubly robust testing procedure, within a semiparametric extension of the front-door model that encodes generalized (Verma) independence constraints. We further show how these constraints can be leveraged to improve the efficiency of causal effect estimators. Simulation studies confirm favorable finite-sample performance, and real-data applications in education and emergency medicine illustrate the practical utility of our methods. An accompanying R package, fdcausal, implements all proposed procedures.
- Abstract(参考訳): 観察研究における因果治療の効果を評価するには、欠点に対処する必要がある。
バックドア基準は観察された共変量の調整による識別を可能にするが、未測定の共起の存在下では失敗する。
フロントドア基準は、治療効果を完全に仲介する変数を活用することで代替手段を提供する。
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築されており、メディエータ密度のモデリングを完全に回避し、フレキシブルな機械学習に基づくニュアンス推定と互換性がある。
ルート=n$整合性および漸近線型性の条件を2階剰余境界から導出する。
また、一般化された(Verma)独立性制約を符号化したフロントドアモデルの半パラメトリック拡張において、二重頑健なテスト手順を含む識別仮定を評価するための柔軟なテストを開発する。
さらに、これらの制約をどのように活用して因果効果推定器の効率を向上させるかを示す。
シミュレーション研究により, 良好な有限サンプル性能が確認され, 教育・救急医療における実データ応用が本手法の実用性を示している。
付随するRパッケージであるfdcausalは、提案されたすべての手順を実装している。
関連論文リスト
- Doubly robust outlier resistant inference on causal treatment effect [0.0]
外圧器は観察研究において因果効果の推定を著しく歪めることができる。
汚染モデルに基づく平均処理効果の2倍頑健な点推定器を提案する。
我々の手法は、精度と堅牢性の両方において既存の手法より一貫して優れている。
論文 参考訳(メタデータ) (2025-07-23T11:58:54Z) - Black Box Causal Inference: Effect Estimation via Meta Prediction [56.277798874118425]
因果推論はデータセットレベルの予測問題であり,アルゴリズム設計を学習プロセスにオフロードする。
我々は,ブラックボックス因果推論 (BBCI) と呼ばれる,サンプルデータセットと効果ペアの因果効果の予測を学習することにより,ブラックボックス方式で推定器を構築する。
我々は,いくつかの因果推論問題に対して,BBCIを用いた平均治療効果(ATE)と条件平均治療効果(CATE)を正確に推定した。
論文 参考訳(メタデータ) (2025-03-07T23:43:19Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Structure-agnostic Optimality of Doubly Robust Learning for Treatment
Effect Estimation [27.630223763160515]
平均処理効果推定は因果推論において最も中心的な問題であり、多くの分野に適用できる。
我々は最近導入された統計的下界の構造非依存の枠組みを採用し、ニュアンス関数に構造的特性を生じさせない。
平均治療効果 (ATE) と平均治療効果 (ATT) の両方に対して, 有意かつ広く用いられている2重頑健性評価器の統計的最適性を証明する。
論文 参考訳(メタデータ) (2024-02-22T04:03:32Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
実験と観測を組み合わせた二重機械学習手法を提案する。
我々の枠組みは、より軽度の仮定の下で、外部の妥当性と無知の違反を検査する。
論文 参考訳(メタデータ) (2023-07-04T02:53:11Z) - Post Reinforcement Learning Inference [22.117487428829488]
強化学習アルゴリズムから収集したデータを用いた推定と推定について検討する。
本稿では,時間変化の分散を安定化させるために,適応重みを慎重に設計した重み付きZ推定手法を提案する。
主な応用は、動的処理効果推定と動的オフポリシー評価である。
論文 参考訳(メタデータ) (2023-02-17T12:53:15Z) - Causal Inference under Data Restrictions [0.0]
この論文は、不確実性とデータ制限の下での現代の因果推論に焦点を当てている。
これには、ネオアジュバント臨床試験、分散データネットワーク、堅牢な個別化意思決定へのアプリケーションが含まれる。
論文 参考訳(メタデータ) (2023-01-20T20:14:32Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
本研究では,治療薬対の条件付き平均因果効果を観測データと仮定の組み合わせで推定する作業について検討した。
これは疫学や経済学など、意思決定のために治療薬対を必要とする分野における長年にわたる課題である。
この問題に対するいくつかのベンチマークデータセットに対して、実証的に新しい最先端のパフォーマンス結果を示す。
論文 参考訳(メタデータ) (2022-05-29T15:26:59Z) - On Testability of the Front-Door Model via Verma Constraints [7.52579126252489]
フロントドア基準は、測定されていない共同設立者にもかかわらず因果関係を識別し、計算するために用いられる。
主要な仮定 -- 結果に対する治療の効果を完全に媒介する変数の存在と、類似したコンバウンディングの問題に同時に苦しめられていない変数の存在は、しばしば許し難いものとみなされる。
補助変数を含む穏やかな条件下では, 一般等式制約により, フロントドアモデルに符号化された仮定を検証できることを示す。
論文 参考訳(メタデータ) (2022-03-01T00:38:29Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Stochastic Intervention for Causal Effect Estimation [7.015556609676951]
介入効果を推定するための新しい確率スコアと介入効果推定器(SIE)を提案する。
また,介入効果(Ge-SIO)に特異的な遺伝的アルゴリズムを設計し,意思決定の因果的証拠を提供する。
提案手法とアルゴリズムは,最先端のベースラインと比較して,大幅な性能向上を実現することができる。
論文 参考訳(メタデータ) (2021-05-27T01:12:03Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。