論文の概要: Efficient Reward Poisoning Attacks on Online Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2205.14842v2
- Date: Fri, 28 Apr 2023 01:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 17:59:36.068158
- Title: Efficient Reward Poisoning Attacks on Online Deep Reinforcement Learning
- Title(参考訳): オンライン深層強化学習における効果的な逆襲攻撃
- Authors: Yinglun Xu, Qi Zeng, Gagandeep Singh
- Abstract要約: オンライン深層学習(DRL)における報酬中毒に関する研究
我々は、敵MDP攻撃と呼ばれる一般的なブラックボックス報酬中毒フレームワークを設計することで、最先端DRLアルゴリズムの本質的な脆弱性を実証する。
以上の結果から,我々の攻撃は,いくつかの古典的制御環境や MuJoCo 環境下で学習する有害物質を効果的に検出できることがわかった。
- 参考スコア(独自算出の注目度): 6.414910263179327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study reward poisoning attacks on online deep reinforcement learning
(DRL), where the attacker is oblivious to the learning algorithm used by the
agent and the dynamics of the environment. We demonstrate the intrinsic
vulnerability of state-of-the-art DRL algorithms by designing a general,
black-box reward poisoning framework called adversarial MDP attacks. We
instantiate our framework to construct two new attacks which only corrupt the
rewards for a small fraction of the total training timesteps and make the agent
learn a low-performing policy. We provide a theoretical analysis of the
efficiency of our attack and perform an extensive empirical evaluation. Our
results show that our attacks efficiently poison agents learning in several
popular classical control and MuJoCo environments with a variety of
state-of-the-art DRL algorithms, such as DQN, PPO, SAC, etc.
- Abstract(参考訳): 本研究では,オンライン深層強化学習(drl)において,エージェントが使用する学習アルゴリズムや環境のダイナミクスに不服従な報酬中毒攻撃について検討する。
我々は,adversarial mdp攻撃と呼ばれる一般的なブラックボックス報酬中毒フレームワークを設計することで,最先端のdrlアルゴリズムに固有の脆弱性を実証する。
私たちは、フレームワークをインスタンス化して、2つの新しいアタックを構築することで、全体のトレーニング時間ステップのごく一部で報酬を損なうだけで、エージェントが低パフォーマンスのポリシーを学ぶことができます。
我々は,攻撃の効率を理論的に解析し,広範な経験的評価を行う。
我々の攻撃は,DQN,PPO,SACなど,様々な最先端のDRLアルゴリズムを用いて,いくつかの古典的制御とMuJoCo環境下で学習し,効果的に毒を投与する。
関連論文リスト
- SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
強化学習(Reinforcement Learning, RL)は、現実世界の安全クリティカルなアプリケーションでの利用が増加している分野である。
この研究では、特にステルス性のRL(バックドア中毒)に対するトレーニングタイムアタックを調査します。
我々は、敵の目的と最適な政策を見出す目的を結びつける新しい毒殺の枠組みを定式化する。
論文 参考訳(メタデータ) (2024-05-30T23:31:25Z) - Universal Black-Box Reward Poisoning Attack against Offline Reinforcement Learning [4.629358641630161]
ニューラルネットワークを用いた汎用オフライン強化学習に対する汎用的ブラックボックス型報酬中毒攻撃の問題点について検討する。
一般オフラインRL設定において,最初の汎用ブラックボックス報酬中毒攻撃を提案する。
論文 参考訳(メタデータ) (2024-02-15T04:08:49Z) - Black-Box Targeted Reward Poisoning Attack Against Online Deep
Reinforcement Learning [2.3526458707956643]
トレーニング期間中の報酬中毒によるオンライン深層学習に対する最初のブラックボックス攻撃を提案する。
我々の攻撃は未知のアルゴリズムによって学習された未知のダイナミクスを持つ一般的な環境に適用できる。
論文 参考訳(メタデータ) (2023-05-18T03:37:29Z) - Attacking and Defending Deep Reinforcement Learning Policies [3.6985039575807246]
本研究では, DRL ポリシーのロバストな最適化の観点から, 敵攻撃に対するロバスト性について検討する。
本稿では,環境との相互作用を伴わずにポリシーの戻りを最小化しようとする欲求攻撃アルゴリズムと,最大限の形式で敵の訓練を行う防衛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:47:54Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
強化学習アルゴリズムに対する報酬の摂動に基づく異なる攻撃戦略の効果を分析します。
敵対的な報酬をスムーズに作成することは学習者を誤解させることができ、低探査確率値を使用すると、学習した政策は報酬を腐敗させるのがより堅牢であることを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:53:48Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
逆摂動状態観測による強化学習の堅牢性について検討した。
固定されたエージェントポリシーでは、摂動状態の観測に最適な敵を見つけることができる。
DRLの設定では、これは以前のものよりもはるかに強い学習された敵対を介してRLエージェントに新しい経験的敵対攻撃につながります。
論文 参考訳(メタデータ) (2021-01-21T05:38:52Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
深部強化学習(DRL)エージェントは、自然な測定誤差や対向雑音を含む観測を通して、その状態を観察する。
観測は真の状態から逸脱するので、エージェントを誤解させ、準最適行動を起こすことができる。
本研究は, 従来の手法を, 対人訓練などの分類タスクの堅牢性向上に応用することは, 多くのRLタスクには有効でないことを示す。
論文 参考訳(メタデータ) (2020-03-19T17:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。