論文の概要: Black-Box Targeted Reward Poisoning Attack Against Online Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2305.10681v1
- Date: Thu, 18 May 2023 03:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 17:13:22.927215
- Title: Black-Box Targeted Reward Poisoning Attack Against Online Deep
Reinforcement Learning
- Title(参考訳): ブラックボックスをターゲットとしたオンライン深層強化学習攻撃
- Authors: Yinglun Xu, Gagandeep Singh
- Abstract要約: トレーニング期間中の報酬中毒によるオンライン深層学習に対する最初のブラックボックス攻撃を提案する。
我々の攻撃は未知のアルゴリズムによって学習された未知のダイナミクスを持つ一般的な環境に適用できる。
- 参考スコア(独自算出の注目度): 2.3526458707956643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the first black-box targeted attack against online deep
reinforcement learning through reward poisoning during training time. Our
attack is applicable to general environments with unknown dynamics learned by
unknown algorithms and requires limited attack budgets and computational
resources. We leverage a general framework and find conditions to ensure
efficient attack under a general assumption of the learning algorithms. We show
that our attack is optimal in our framework under the conditions. We
experimentally verify that with limited budgets, our attack efficiently leads
the learning agent to various target policies under a diverse set of popular
DRL environments and state-of-the-art learners.
- Abstract(参考訳): トレーニング期間中の報酬中毒によるオンライン深層学習に対する最初のブラックボックス攻撃を提案する。
この攻撃は未知のアルゴリズムによって学習される未知のダイナミクスを持つ一般的な環境に適用でき、攻撃予算と計算資源が限られている。
一般的なフレームワークを活用し,学習アルゴリズムの一般的な仮定の下で効率的な攻撃を確実にするための条件を求める。
この条件下での攻撃が我々のフレームワークで最適であることを示す。
限られた予算で、我々は学習エージェントが様々なdrl環境や最先端の学習者の下で、効率的に様々なターゲットポリシーに導くことを実験的に検証する。
関連論文リスト
- Universal Black-Box Reward Poisoning Attack against Offline Reinforcement Learning [4.629358641630161]
ニューラルネットワークを用いた汎用オフライン強化学習に対する汎用的ブラックボックス型報酬中毒攻撃の問題点について検討する。
一般オフラインRL設定において,最初の汎用ブラックボックス報酬中毒攻撃を提案する。
論文 参考訳(メタデータ) (2024-02-15T04:08:49Z) - Efficient Reward Poisoning Attacks on Online Deep Reinforcement Learning [6.414910263179327]
オンライン深層学習(DRL)における報酬中毒に関する研究
我々は、敵MDP攻撃と呼ばれる一般的なブラックボックス報酬中毒フレームワークを設計することで、最先端DRLアルゴリズムの本質的な脆弱性を実証する。
以上の結果から,我々の攻撃は,いくつかの古典的制御環境や MuJoCo 環境下で学習する有害物質を効果的に検出できることがわかった。
論文 参考訳(メタデータ) (2022-05-30T04:07:19Z) - Attacking and Defending Deep Reinforcement Learning Policies [3.6985039575807246]
本研究では, DRL ポリシーのロバストな最適化の観点から, 敵攻撃に対するロバスト性について検討する。
本稿では,環境との相互作用を伴わずにポリシーの戻りを最小化しようとする欲求攻撃アルゴリズムと,最大限の形式で敵の訓練を行う防衛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:47:54Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
LAS-ATと呼ばれる「学習可能な攻撃戦略」は、モデル堅牢性を改善するための攻撃戦略を自動生成することを学ぶ。
当社のフレームワークは,強靭性向上のためのトレーニングにAEを使用するターゲットネットワークと,AE生成を制御するための攻撃戦略を生成する戦略ネットワークで構成されている。
論文 参考訳(メタデータ) (2022-03-13T10:21:26Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks [81.13338949407205]
近年の研究では、最適なバンディットアルゴリズムは敵攻撃に対して脆弱であり、攻撃の有無で完全に失敗する可能性があることが示されている。
既存の堅牢なバンディットアルゴリズムは、報酬の攻撃下では、非コンテキスト設定でのみ機能する。
完全適応的かつ全能的な攻撃下での線形文脈帯域設定のための最初の頑健な帯域幅アルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-05T22:20:34Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
強化学習アルゴリズムに対する報酬の摂動に基づく異なる攻撃戦略の効果を分析します。
敵対的な報酬をスムーズに作成することは学習者を誤解させることができ、低探査確率値を使用すると、学習した政策は報酬を腐敗させるのがより堅牢であることを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:53:48Z) - Policy Teaching in Reinforcement Learning via Environment Poisoning
Attacks [33.41280432984183]
本研究では,攻撃者が学習環境を害し,攻撃者が選択したターゲットポリシーの実行を強制する強化学習に対するセキュリティ上の脅威について検討する。
被害者として、無限水平問題設定における報酬を最大化するポリシーを見つけることを目的としたRLエージェントを考える。
論文 参考訳(メタデータ) (2020-11-21T16:54:45Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z) - Policy Teaching via Environment Poisoning: Training-time Adversarial
Attacks against Reinforcement Learning [33.41280432984183]
本研究では,攻撃者が学習環境を害してエージェントに目標ポリシーの実行を強制する強化学習に対するセキュリティ上の脅威について検討する。
被害者として、未報告の無限水平問題設定における平均報酬を最大化するポリシーを見つけることを目的としたRLエージェントを考える。
論文 参考訳(メタデータ) (2020-03-28T23:22:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。