論文の概要: A Deep Learning Approach for Automatic Detection of Qualitative Features
of Lecturing
- arxiv url: http://arxiv.org/abs/2205.14919v1
- Date: Mon, 30 May 2022 08:37:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 15:30:14.801762
- Title: A Deep Learning Approach for Automatic Detection of Qualitative Features
of Lecturing
- Title(参考訳): 講義の質的特徴の自動検出のためのディープラーニング手法
- Authors: Anna Wroblewska, Jozef Jasek, Bogdan Jastrzebski, Stanislaw Pawlak,
Anna Grzywacz, Cheong Siew Ann, Tan Seng Chee, Tomasz Trzcinski, Janusz
Holyst
- Abstract要約: 学術講義を定量的特徴によって自動的に評価する方法を考察する。
機械学習とコンピュータビジョン技術を用いて,これらの特徴を自動的に検出する方法を示す。
- 参考スコア(独自算出の注目度): 7.442136010649996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence in higher education opens new possibilities for
improving the lecturing process, such as enriching didactic materials, helping
in assessing students' works or even providing directions to the teachers on
how to enhance the lectures. We follow this research path, and in this work, we
explore how an academic lecture can be assessed automatically by quantitative
features. First, we prepare a set of qualitative features based on teaching
practices and then annotate the dataset of academic lecture videos collected
for this purpose. We then show how these features could be detected
automatically using machine learning and computer vision techniques. Our
results show the potential usefulness of our work.
- Abstract(参考訳): 高等教育における人工知能は、ディダクティック教材の充実、学生の業績評価の支援、講義の強化方法に関する教師への指示など、講義プロセスを改善する新たな可能性を開く。
本研究は,本研究の流れを辿り,定量的特徴によって学術講義を自動評価する方法を考察する。
まず,授業実践に基づく質的な特徴のセットを作成し,その目的のために収集した講義ビデオのデータセットに注釈を付ける。
次に、機械学習とコンピュータビジョン技術を用いて、これらの機能を自動検出する方法を示す。
我々の結果は、我々の仕事の潜在的有用性を示している。
関連論文リスト
- Is the Lecture Engaging for Learning? Lecture Voice Sentiment Analysis for Knowledge Graph-Supported Intelligent Lecturing Assistant (ILA) System [0.060227699034124595]
本システムは,音声,コンテンツ,教育のリアルタイム分析を通じて,生徒の学習力を高めるためのインストラクターを支援するように設計されている。
講義音声感情分析のケーススタディとして,3000以上の1分間の講義音声クリップからなるトレーニングセットを開発した。
私たちの究極のゴールは、現代の人工知能技術を活用することで、インストラクターがより積極的に効果的に教えることを支援することです。
論文 参考訳(メタデータ) (2024-08-20T02:22:27Z) - Assistive Image Annotation Systems with Deep Learning and Natural Language Capabilities: A Review [0.0]
本稿では、入力画像のテキスト提案、キャプション、記述をアノテータに提供するためのAI支援型ディープラーニング画像アノテーションシステムについて検討する。
各種データセットをレビューし,AI補助アノテーションシステムのトレーニングと評価にどのように貢献するかを検討する。
有望な可能性にもかかわらず、テキスト出力機能を備えたAIアシスト画像アノテーションに関する公開作業は限られている。
論文 参考訳(メタデータ) (2024-06-28T22:56:17Z) - Intelligent Interface: Enhancing Lecture Engagement with Didactic Activity Summaries [0.054204929130712134]
このプロトタイプは、機械学習に基づく技術を用いて、講義のビデオ録画の中で選択された実践的、行動的な教師の特徴を認識する。
このシステムは、新しい/追加の機械学習モデルと画像およびビデオ分析のためのソフトウェアモジュールの(将来の)統合のための柔軟性を提供する。
論文 参考訳(メタデータ) (2024-06-20T12:45:23Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
ロボット学習にフォーカスポイントに関する補助情報を埋め込むことで、学習プロセスの効率性と堅牢性が向上すると考えられる。
本稿では,人間の注意を近似予測モデルでモデル化し,エミュレートするための新しいアプローチを提案する。
我々は,物体検出と模倣学習という2つの学習課題にアプローチを試行する。
論文 参考訳(メタデータ) (2023-08-29T14:23:44Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - AANG: Automating Auxiliary Learning [110.36191309793135]
補助目的の集合を自動生成する手法を提案する。
我々は、新しい統合分類体系の中で既存の目的を分解し、それらの関係を識別し、発見された構造に基づいて新しい目的を創出することで、これを実現する。
これにより、生成された目的物の空間を探索し、指定されたエンドタスクに最も有用なものを見つけるための、原理的かつ効率的なアルゴリズムが導かれる。
論文 参考訳(メタデータ) (2022-05-27T16:32:28Z) - An Interactive Visualization Tool for Understanding Active Learning [12.345164513513671]
本稿では,能動学習の学習過程を明らかにするための対話型可視化ツールを提案する。
このツールは、興味深いデータポイントのサンプルを選択し、異なるクエリ段階でそれらの予測値がどのように変化するかを確認し、アクティブな学習がいつどのように機能するかをよりよく理解することができる。
論文 参考訳(メタデータ) (2021-11-09T03:33:26Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
KnowledgeCheckRに統合された推奨アプローチの概要を提供します。
その例としては,将来的に繰り返される学習内容の識別を支援するユーティリティベースのレコメンデーション,セッションベースのレコメンデーションを実装するための協調フィルタリングアプローチ,インテリジェントな質問応答を支援するコンテントベースのレコメンデーションなどがある。
論文 参考訳(メタデータ) (2021-02-15T20:06:28Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
物体知覚はコンピュータビジョンの基本的なサブフィールドである。
最近の研究は、物体の視覚的解釈のインテリジェンスレベルを拡大するために、知識工学を統合する方法を模索している。
論文 参考訳(メタデータ) (2019-12-26T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。