Metrizing Fairness
- URL: http://arxiv.org/abs/2205.15049v5
- Date: Tue, 11 Jun 2024 09:34:06 GMT
- Title: Metrizing Fairness
- Authors: Yves Rychener, Bahar Taskesen, Daniel Kuhn,
- Abstract summary: We study supervised learning problems that have significant effects on individuals from two demographic groups.
We seek predictors that are fair with respect to a group fairness criterion such as statistical parity (SP)
In this paper, we identify conditions under which hard SP constraints are guaranteed to improve predictive accuracy.
- Score: 5.323439381187456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study supervised learning problems that have significant effects on individuals from two demographic groups, and we seek predictors that are fair with respect to a group fairness criterion such as statistical parity (SP). A predictor is SP-fair if the distributions of predictions within the two groups are close in Kolmogorov distance, and fairness is achieved by penalizing the dissimilarity of these two distributions in the objective function of the learning problem. In this paper, we identify conditions under which hard SP constraints are guaranteed to improve predictive accuracy. We also showcase conceptual and computational benefits of measuring unfairness with integral probability metrics (IPMs) other than the Kolmogorov distance. Conceptually, we show that the generator of any IPM can be interpreted as a family of utility functions and that unfairness with respect to this IPM arises if individuals in the two demographic groups have diverging expected utilities. We also prove that the unfairness-regularized prediction loss admits unbiased gradient estimators, which are constructed from random mini-batches of training samples, if unfairness is measured by the squared $\mathcal L^2$-distance or by a squared maximum mean discrepancy. In this case, the fair learning problem is susceptible to efficient stochastic gradient descent (SGD) algorithms. Numerical experiments on synthetic and real data show that these SGD algorithms outperform state-of-the-art methods for fair learning in that they achieve superior accuracy-unfairness trade-offs -- sometimes orders of magnitude faster.
Related papers
- On the Maximal Local Disparity of Fairness-Aware Classifiers [35.98015221840018]
We propose a novel fairness metric called Maximal Cumulative ratio Disparity along varying Predictions' neighborhood (MCDP)
To accurately and efficiently calculate the MCDP, we develop a provably exact and an approximate calculation algorithm that greatly reduces the computational complexity with low estimation error.
arXiv Detail & Related papers (2024-06-05T13:35:48Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
We introduce the Fair Mixed Effects Deep Learning (Fair MEDL) framework.
Fair MEDL quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE)
We incorporate adversarial debiasing to promote fairness across three key metrics: Equalized Odds, Demographic Parity, and Counterfactual Fairness.
arXiv Detail & Related papers (2023-10-04T20:18:45Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
We study the problem of learning a real-valued function that satisfies the Demographic Parity constraint.
It demands the distribution of the predicted output to be independent of the sensitive attribute.
We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor.
arXiv Detail & Related papers (2020-06-12T16:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.